PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the Sedimentation Process in the Thickener by Using the Parameters of Longitudinal Ultrasonic Oscillations and Lamb Waves

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water is widely used in the mining industry, particularly in mineral enrichment processes. In the process of magnetic separation or flotation of crushed ore, a concentrate (an enriched product), and tailings (a product with a low content of a useful component) are obtained. One of the main tasks of enrichment processes is the efficient use of water resources. This is achieved by reclaiming and subsequent reusing water contained in ore beneficiation products by extracting it in industrial thickeners. Optimizing this process makes it possible to reduce water usage in the mining industry, reduce costs of mineral enrichment processes, and address extremely urgent environmental protection problems. To evaluate the process of sedimentation of the solid phase in the pulp within the thickener, measurements of parameters of longitudinal ultrasonic oscillations and Lamb waves that have traveled a fixed distance in the pulp and along the measuring surface in contact with it are used. The proposed approach allows for the consideration of pulp density, particle size of the solid phase in the ore material and the dynamics of changes in these parameters in the thickener at the initial stage of the sedimentation process. Based on the obtained values, adjustments can be made to the characteristics of its initial product, leading to reduced water usage and minimized loss of a useful component.
Rocznik
Strony
539–--548
Opis fizyczny
Bibliogr. 30 poz., rys. wykr.
Twórcy
  • Kryvyi Rih National University Kryvyi Rih, Ukraine
  • Kryvyi Rih National University Kryvyi Rih, Ukraine
autor
  • Kryvyi Rih National University Kryvyi Rih, Ukraine
  • Kryvyi Rih National University Kryvyi Rih, Ukraine
  • Kryvyi Rih National University Kryvyi Rih, Ukraine
Bibliografia
  • 1. Arjmand R., Massinaei M., Behnamfard A. (2019), Improving flocculation and dewatering performance of iron tailings thickeners, Journal of Water Process Engineering, 31: 100873, doi: 10.1016/j.jwpe.2019.100873.
  • 2. Barth A., Bürger R., Kröker I., Rohde C. (2016), Computational uncertainty quantification for a clarifier-thickener model with several random perturbations: A hybrid stochastic Galerkin approach, Computers & Chemical Engineering, 89: 11-26, doi: 10.1016/j.compchemeng.2016.02.016.
  • 3. Betancourt F., Bürger R., Diehl S., Farås S. (2014), A model of clarifier-thickener control with time-dependent feed properties, Presented at Physical Separation ’13, Falmouth, UK, Minerals Engineering, 62: 91-101, doi: 10.1016/j.mineng.2013.12.011.
  • 4. Bürger R., Chowell G., Gavilán E., Mulet P., Villada L.M. (2019), Numerical solution of a spatiotemporal predator-prey model with infected prey, Mathematical Biosciences and Engineering, 16(1): 438-473, doi: 10.3934/mbe.2019021.
  • 5. Bürger R., Diehl S., Farås S., Nopens I., Torfs E. (2013), A consistent modelling methodology for secondary settling tanks: A reliable numerical method, Water Science & Technology, 68(1): 192-208, doi: 10.2166/wst.2013.239.
  • 6. Chai T., Li H., Wang H. (2014), An intelligent switching control for the intervals of concentration and flowrate of underflow slurry in a mixed separation thickener, IFAC Proceedings Volumes, 47(3): 338-345, doi: 10.3182/20140824-6-ZA-1003.02114.
  • 7. Garmsiri M.R., Unesi M. (2018), Challenges and opportunities of hydrocyclone-thickener dewatering circuit: A pilot scale study, Minerals Engineering, 122: 206-210, doi: 10.1016/j.mineng.2018.04.001.
  • 8. Golik V., Komashchenko V., Morkun V., Gaponenko I. (2015a), Improving the effectiveness of explosive breaking on the basis of new methods of borehole charge initiation in quarries, Metallurgical and Mining Industry, 7(7): 383-387.
  • 9. Golik V., Komashchenko V., Morkun V., Zaalishvili V. (2015b), Enhancement of lost ore production efficiency by usage of canopies, Metallurgical and Mining Industry, 7(4): 325-329.
  • 10. KANSAI Automation Co., Ltd. (n.d.), Ultrasonic sludge blanket level meter, https://kansai-automation.co.jp/en/product/flow_meter_etc/sludge_interface.php (access: 22.08.2022).
  • 11. Markland Specialty Engineering Ltd. (n.d.), Portable sludge blanket level detector, https://sludgecontrols.com/our-products/portable-sludge-level-detector (access: 22.08.2022).
  • 12. Metso (2017), Advanced thickener control, https://www.mogroup.com/insights/blog/mining-and-metals/advanced-thickener-control/ (access: 22.08.2022).
  • 13. Morkun V., Morkun N., Tron V. (2015a), Distributed closed-loop control formation for technological line of iron ore raw materials beneficiation, Metallurgical and Mining Industry, 7(7): 16-19.
  • 14. Morkun V., Morkun N., Tron V. (2015b), Distributed control of ore beneficiation interrelated processes under parametric uncertainty, Metallurgical and Mining Industry, 7(8): 18-21.
  • 15. Morkun V., Morkun N., Pikilnyak A. (2014a), Iron ore flotation process control and optimization using high-energy ultrasound, Metallurgical and Mining Industry, 6(2): 36-42.
  • 16. Morkun V., Morkun N., Pikilnyak A. (2014b), Modeling of ultrasonic waves propagation in inhomogeneous medium using fibered spaces method (k-space), Metallurgical and Mining Industry, 6(2): 43-48.
  • 17. Morkun V., Morkun N., Pikilnyak A. (2014c), The gas bubble size distribution control formation in the flotation process, Metallurgical and Mining Industry, 6(4): 42-45.
  • 18. Morkun V., Morkun N., Tron V., Hryshchenko S., Serdiuk O., Dotsenko I. (2019), Basic regularities of assessing ore pulp parameters in gravity settling of solid phase particles based on ultrasonic measurements, Archives of Acoustics, 44(1): 161-167, doi: 10.24425/aoa.2019.126362.
  • 19. Morkun V., Semerikov S.O., Hryshchenko S.M., Slovak K.I. (2017), Environmental geo-information technologies as a tool of pre-service mining engineer’s training for sustainable development of mining industry, CEUR Workshop Proceedings, 1844: 303-310.
  • 20. Ojeda P., Bergh L.G., Torres L. (2014), Intelligent control of an industrial thickener, 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 505-510, doi: 10.1109/ICARCV.2014.7064356.
  • 21. PLA Process Analysers (n.d.), Automatic mud-diver, tank profiling & interface detection system for clarifiers, thickeners & CCD’s, https://www.plapl.com.au/mud-diver/ (access: 22.08.2022).
  • 22. Segovia J.P., Concha F., Sbarbaro D. (2011), On the control of sludge level and underflow concentration in industrial thickeners, IFAC Proceedings Volumes, 44(1): 8571-8576, doi: 10.3182/20110828-6-IT-1002.02667.
  • 23. Shukla V., Kumar C.R., Chakraborty D.P., Shivangi U., Du J. (2021), Iron ore tailing beneficiation - A potential resource for future, International Journal of Engineering Research & Technology (IJERT), 10(9): 787-791.
  • 24. Sinonine Tech (n.d.), Thickener automatic control, https://www.sinoninetech.com/index.php/Home/News/show/id/108.html (access: 22.08.2022).
  • 25. Smith M. (n.d.), 5 ways to measure bed level in thickeners, PLA Process Analysers, https://www.plapl.com.au/5-ways-to-measure-bed-level-in-thickeners/ (access: 22.08.2022).
  • 26. Tan C.K., Setiawan R., Bao J., Bickert G. (2015), Studies on parameter estimation and model predictive control of paste thickeners, Journal of Process Control, 28: 1-8, doi: 10.1016/j.jprocont.2015.02.002.
  • 27. Tripathy S.K., Murthy Y.R., Farrokhpay S., Filippov L.O. (2021), Design and analysis of dewatering circuits for a chromite processing plant tailing slurry, Mineral Processing and Extractive Metallurgy Review, 42(2): 102-114, doi: 10.1080/08827508.2019.1700983.
  • 28. Xu N., Wang X., Zhou J., Wang Q., Fang W., Peng X. (2015), An intelligent control strategy for thickening process, International Journal of Mineral Processing, 142: 56-62, doi: 10.1016/j.minpro.2015.01.007.
  • 29. Zhang J., Yin X., Liu J. (2016), Economic MPC of deep cone thickeners in coal beneficiation, The Canadian Journal of Chemical Engineering, 94(3): 498-505, doi: 10.1002/cjce.22419.
  • 30. Zuzunaga A., Van der Spek A., Urquiola R., Maron R. (2018), Uses and benefits of flow measurement in the operation of tailings thickeners, 5th International Seminar on Tailings Management.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fe0db45-f160-4940-b1a0-46a93a05becf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.