Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Recycled aluminium alloys are a highly valued alternative for manufacturers, particularly in the automotive and aerospace industries, due to increasing demands on the environmental performance and sustainability of the industry. Self-hardening aluminium alloys, which achieve the required mechanical properties without heat treatment, enable the emissions generated by production to be reduced even further. In addition to an advantageous strength-to-weight ratio and excellent machinability, corrosion resistance in a variety of environments is also important in most applications of aluminium alloys. Repeated recycling cycles negatively influence the quality of aluminium because of an increase in iron content, which is considered an impurity. This is due to the formation of intermetallic phases which negatively affect the mechanical, fatigue and corrosion properties. In this paper, the effect of Fe and Mn on the microstructure and corrosion resistance of self-hardening recycled AlZn10Si8Mg alloy was investigated using the AUDI test, atmospheric long-terming test and 3.5% NaCl solution test. The corrosion mechanism was subsequently determined by sectioning the samples. Alloy A with the lowest iron content exhibited the best corrosion behaviour, as it was subjected to only localised forms of corrosion even in the aggressive environment of the AUDI test. In this environment, the other alloys were attacked by general corrosion of the entire surface. Manganese alloying caused a subtle improvement in the corrosion resistance of alloy D but was limited by the high porosity. The eutectic and intermetallic phases corroded the most, while the alpha phase was more resistant.
Czasopismo
Rocznik
Tom
Strony
54--64
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
autor
- Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
autor
- Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
autor
- Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
Bibliografia
- 1. Al-Alimi, S., Yusuf, N.K., Ghaleb, A.M., Lajis, M.A., Shamsudin, S., Zhou, W., Altharan, Y.M., Abdulwahab, H.S., Saif, Y., Didane, D.H., S T T, I., Adam, A., 2024. Recycling aluminium for sustainable development: A review of different processing technologies in green manufacturing. Results in Engineering, 29. DOI: 10.1016/j.rineng.2024.102566
- 2. Arrabal, R., Mingo, B., Pardo, A., Mohedano, M., Matykina, E., Rodríguez, I., 2013. Pitting corrosion of rheocast A356 aluminium alloy in 3.5 wt.% NaCl solution. Corrosion Science, 73, 342-355. DOI: 10.1016/j.corsci.2013.04.023
- 3. De la Fuente, D., Otero-Huerta, E., Morcillo, M., 2007. Studies of long-term weathering of aluminium in the atmosphere. Corrosion Science, 49, 3134-3148. DOI: 10.1016/j.corsci.2007.01.006
- 4. Fracchia, E., Gobber, F.S., Rosso, M., 2021. Effect of Alloying Elements on the Sr Modification of Al-Si Cast Alloys. Metals, 11(2). DOI: 10.3390/met11020342
- 5. Freitas, B.J.M.., Otani, L.B., Kiminami, C.S., Botta, W.J., Bolfarini, C., 2019. Effect of iron on the microstructure and mechanical properties of the spray-formed and rotary-swaged 319 aluminum alloy. The International Journal of Advanced Manufacturing Technology, 102, 3879-3894. DOI: 10.1007/s00170-019-03449-z
- 6. Fu, J., Cui, K., 2022. Effect of Mn content on the microstructure and corrosion resistance of Al-Cu-Mg-Mn alloys. Journal of Alloys and Compounds, 896. DOI: 10.1016/j.jallcom.2021.162903
- 7. Galevsky, G.V., Rudneva, V.V., Aleksandrov, V.S., 2018. Current state of the world and domectic aluminium production and consumption. IOP Conf. Series: Materials Science and Engineering, 411. DOI: 10.1088/1757- 899X/411/1/012017
- 8. Ma, Y., Wang, M., Liu, Y., Cai, B., 2022. Microstructures and corrosion behaviors of Al−6.5Si−0.45Mg−xSc casting alloy Trans. Nonferrous Met. Soc. China, 32, 424-435. DOI: 10.1016/S1003-6326(22)65804-7
- 9. Michna, Š., Knaislová, A., Svobodová, J., Novotný, J., Michnová, L., 2024. Possibility of Eliminating Iron in Aluminium Alloy Through Sedimentation. Manufacturing Technology, 24(5). DOI: 10.21062/mft.2024.082
- 10. Kamarska, K., 2019. Investigation of the Corrosion Behaviour of Aluminium Alloy in Selected Environments. Environment Technology Resources Proceedings of the International Scientific and Practical Conference, 3, 92-94. DOI: 10.17770/etr2019vol3.4191
- 11. Kim, J., Shin, S., Lee, S., 2022. Correlation between microstructural evolution and corrosion resistance of hypoeutectic Al–Si–Mg alloy: Influence of corrosion product layer. Materials Characterization., 193. DOI: 10.1016/j.matchar.2022.112276
- 12. Kuchariková, L., Liptáková, T., Tillová, E., Bonek, M., Medvecká, D., 2020. Corrosion Behaviour Correlation of the Secondary Aluminium Casts in Natural Atmosphere and Laboratory Conditions. Arch. Metall. Mater., 65(4), 1455-1462. DOI: 10.24425/amm.2020.133713
- 13. Kuchariková, L., Pastierovičová, L., Tillová, E., Chalupová, M., Závodská, D., 2023. Investigation of Self-hardening AlZn10Si8Mg Cast Alloy for the Automotive Industry. Arch. Metall. Mater., 68(2), 517-524. DOI: 10.24425/amm.2023.142430
- 14. Kuchariková, L., Pastierovičová, L., Tillová, E., Uhríčik, M., Zatkalíková, V., Šajgalík, M., 2023. The Influence of a Corrosive Environment on Fatigue and Mechanical Properties of An Al-Cast Alloy with Higher Fe Content. Metals., 13(6). DOI: 10.3390/met13061019
- 15. Lazaro-Nebreda, J., Patel, J.B., Al-Helal, K., Gao, F., Stone, I., Chang, I.T.H., Scamans, G.M., Fan, Z., 2022. De-Ironing of Aluminium Alloy Melts by High Shear Melt Conditioning Technology: An Overview. Metals, 12(10), 1579. DOI: 10.3390/met12101579
- 16. Nunes, H., Emadinia, O., Soares, R., Vieira, M.F., Reis, A., 2023. Adding Value to Secondary Aluminum Casting Alloys: A Review on Trends and Achievements. Materials, 16(3), 895. DOI: 10.3390/ma16030895
- 17. Padamata, S.K., Yasinskiy, A., Polyakov, P., 2021. A Review of Secondary Aluminum Production and Its Byproducts. JOM, 73(9), 2603-2614. DOI: 1 10.1007/s11837-021-04802-y
- 18. Panchal, H., Singh, S., Sharma, R., Solanki, K, Kahar, S, 2023. The effect of alloying additions on the structure and properties of Al-Mg-Zn-Si-Mn alloy: A review. International Journal of Scientific Development and Research (IJSDR), 8(3), 1256-1269.
- 19. Peter, I., Castella, C., Molina, R., 2020. An innovative class of aluminum alloys for automotive industry: investigation on their corrosion resistance. IOP Conf. Ser.: Mater. Sci. Eng. 916. DOI: 10.1088/1757- 899X/916/1/012082
- 20. Piątkowski, J., Hejne, M., Wieszała, R., 2023. Influence of manganese content on the microstructure and properties of AlSi10MnMg(Fe) alloy for die castings. Archives of Materials Science and Engineering, 123(1), 5-12. DOI: 10.5604/01.3001.0053.9750
- 21. Rosso, M., Peter, I., Castella, Ch., Molina, R., 2015. Optimization of composition for self-hardening AlZn10Si8Mg alloys. Materials Today: Proceedings, 2(10), 4949-4956. DOI: 10.1016/j.matpr.2015.10.066
- 22. Ruiz-Garcia, A., Esquivel-Pena, V., Godínez, F.A., Montoya, R., 2024. Corrosion Modeling of Aluminum Alloys: A Brief Review. ChemElectroChem, 11(9). DOI: 10.1002/celc.202300712
- 23. Sanchez, J.M., Arribas, M., Galarraga, H., de Cortaza, M.G., Ellero, M., Girot, F., 2023. Effects of Mn addittion, cooling rate and holding temperature on the modification and purification of iron-rich compounds in AlSi10MnMg(Fe) alloy. Heliyon, 9. DOI: 10.1016/j.heliyon.2023.e13005
- 24. Soo, V.K., Peeters, J.R., Compston, P., Doolan, M., Duflou, J.R., 2019. Economic and Environmental Evaluation of Aluminium Recycling based on a Belgian Case Study. Procedia Manufacturing, 33, 639-646. DOI: 10.1016/j.promfg.2019.04.080
- 25. Svobodova, J., Lunak, M., Lattner, M., 2019. Analysis of the Increased Iron Content on the Corrosion Resistance of the AlSi7Mg0.3 Alloy Casting. Manufacturing Technology, 19(6), 1041-1046. DOI: 10.21062/ujep /415.2019/a/1213-2489/MT/19/6/1041
- 26. Šurdová, Z., Kuchariková, L., Tillová, E., Pastierovičová, L., Chalupová, M., Uhríčik, M., Mikolajčík, M., 2022. The Influence of Fe Content on Corrosion Resistance of secondary AlSi7Mg0.3 Cast Alloy with Increased Fe-content. Manufacturing Technology, 22(5), 598-604. DOI: 10.21062/mft.2022.073
- 27. Vasconcelos, A., Azevedo, H., Barros, A., Rocha, O., Melo, M.M., 2021. Influence of the dendritic microstructure and β-Al5FeSi phase on the wear characteristics in a horizontally solidified Al-7Si-0.4Mg-1.2Fe alloy. Materials Today Communications, 26(1-2). DOI: 10.1016/j.mtcomm.2021.102099
- 28. Varshney, D., Kumar, K., 2021. Application and use of different aluminium alloys with respect to workability, strength and welding parameter optimization. Ain Shams Engineering Journal, 12(1), 1143-1152. DOI: 10.1016/j.asej.2020.05.013
- 29. Zhang, H., Yu, S., Yang, Z., Zhang, C., 2023. The influence of porosity and precipitates on the corrosion behavior of A356 aluminum alloy. Journal of Electroanalytical Chemistry, 948. DOI: 10.1016/j.jelechem. 2023.117796
- 30. Zhao, J., Zhao, T., Zhang, Y., Zhang, Z., Chen, Z., Wang, J., Chen, M., 2024. Corrosion Behavior of the 2024 Aluminum Alloy in the Atmospheric Environment of the South China Sea Islands. Coatings, 14(3). DOI: 10.3390/coatings14030331
- 31. Zhu, H., Leng, M., Jin, G., Miao, H., 2022. A Review of Research on Galvanic Corrosion of Aluminum Alloys. Fluid Dynamics & Materials Processing, 19(7), 1907-1923. DOI: 10.32604/fdmp.2023.025416
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fdf2167-278b-488c-aeb1-4ca24f2c747f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.