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Abstract: A new approach for stochastic upper bound 
kinematical analyses is described. The study  proposes 
an iterative algorithm that uses the Vanmarcke spatial 
averaging and kinematical failure mechanisms. The 
iterative procedure ensures the consistency between 
failure geometry and covariance matrix, which influences 
the quality of the results. The proposed algorithm can be 
applied to bearing capacity evaluation or slope stability 
problems. The iterative algorithm is used in the study 
to analyse the three-dimensional undrained bearing 
capacity of shallow foundations and the bearing capacity 
of the foundation for two-layered soil, in both cases, the 
soil strength spatial variability is included. Moreover, the 
obtained results are compared with those provided by the 
algorithm, based on the constant covariance matrix. The 
study shows that both approaches provide similar results 
for a variety of foundation shapes and scale of fluctuation 
values. Therefore, the simplified algorithm can be used 
for purposes that require high computational efficiency 
and for practical applications. The achieved efficiency 
using a constant covariance matrix for one realisation 
of a three-dimensional bearing capacity problem that 
includes the soil strength spatial variability results in 
about 0.5 seconds for a standard notebook. The numerical 
example presented in the study indicates the importance 
of the iterative algorithm for further development of the 
failure mechanism application in probabilistic analyses. 
Moreover, because the iterative algorithm is based on the 
upper bound theorem, it could be utilised as a reference 
for other methods for spatially variable soil.

Keywords: random bearing capacity; shallow 
foundation; scale of fluctuation; iterative algorithm; 
upper bound; spatial variability.

Nomenclature
N – number of Monte Carlo realisations
μcu

 – undrained shear strength mean value
σ2

cu
 – variance of the undrained shear strength

νcu
 – variation coefficient of the undrained shear strength

θx,θy,θh – horizontal scales of fluctuation
θz,θv – vertical scales of fluctuation
γ – vector of independent soil strength parameters
γC – vector of correlated soil strength parameters
n – number of dissipation regions
p – bearing capacity
∆ - vector of failure geometry parameters 
C – covariance matrix
k – number of covariance matrix iterations

1  Introduction
Stochastic analyses are currently used extensively in 
a wide range of geotechnical applications. This is the 
reason of soil spatial variability caused by the geological 
processes that form the soil layer (e.g., Ferreira et al., 
2015). The influence of soil spatial variability is examined 
via numerical methods based on the finite element 
method, finite difference method, or finite limit analysis. 
These methods are used to examine the impact of soil 
strength spatial variability on engineering structures 
such as foundations, slopes, or sheet pile walls (e.g., 
Griffiths et al., 2002; Fenton and Griffiths, 2002, 2008; 
Griffiths and Fenton, 2004; Srivastava et al., 2010; 
Kasama and Whittle, 2011; Huang et al., 2013; Simoes 
et al., 2014; Zhu et al, 2017; Kawa et al., 2019; Halder 
and Chakraborty, 2020; Pramanik et al., 2020; Żyliński 
et al., 2020; Kawa and Puła 2020; Viviescas et al., 2020; 
Pramanik et al., 2021). However, the numerical efficiency 
of most existing probabilistic methods is not sufficient for 
practical applications where three-dimensional analyses 
are crucial. This is true especially for three-dimensional 
issues for which the three-dimensional nature of soil 
strength spatial variability suggests that there are 
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difficulties with its two-dimensional simplifications (e.g. 
plane strain conditions). This is the reason researchers 
investigated the possibility of providing more efficient 
3-D approaches for bearing capacity analysis in the case 
of soil spatial variability, e.g., Chwała (2019; 2020), Li et 
al. (2021), Li et al., (2021). In the earlier papers by Puła 
and Chwała (2018) and Chwała (2019), the algorithm for 
using the upper bound limit theorem and Vanmarcke’s 
spatial averaging (Vanmarcke, 1977a,b; 1983)  is 
presented for two-dimensional and three-dimensional 
bearing capacity evaluation, respectively. However, the 
numerical efficiency achieved by Chwała (2019) can 
be further improved by using the so-called constant 
covariance matrix approach (Chwała, 2020). The constant 
covariance matrix approach means that the matrix is 
obtained using the expected values of soil strength 
parameters; the concept was first proposed by Puła 
(2004; 2007). Generally speaking, the above approaches 
are based on random field discretisation to a single 
random variable (each random variable corresponds to a 
specific dissipation region in a failure mechanism). These 
variables are correlated with the covariance matrix, and 
this matrix is the basis for generating the average soil 
strength parameters (e.g., Fenton and Griffiths, 2008; 
Puła and Chwała, 2015). However, the solution suggested 
by Chwała (2019) for three-dimensional issues is based 
on one iteration of the covariance matrix (for more details 
see the next section). The same approach is used for 
two-dimensional analyses by Puła and Chwała (2018). 
Therefore, there is still a need of verify this assumption. 
To study the impact of the iteration number of covariance 
matrix and to extend the use of the proposed method to 
other geotechnical applications, an iterative algorithm 
was developed and is described in this study. The main 
objective is to provide a general procedure that can 
be utilised for a variety of geotechnical applications, 
where the upper bound limit theorem (e.g., Shield and 
Drucker, 1953) and Vanmarcke’s spatial averaging are 
used. Another important objective of this study is to 
compare the simplified approach, which is based on the 
constant covariance matrix with the iterative procedure 
that is proposed here. The iterative procedure is based on 
redetermining the covariance matrix in the subsequent 
iterations; thus, the covariance matrix corresponds 
to the failure geometry. As a numerical example, 
the proposed algorithm is used to analyse the three-
dimensional bearing capacity of a shallow foundation 
under undrained conditions and the bearing capacity 
of two-layered soils. The comparison of the iterative 
approach with the constant matrix approach is crucial for 
further practical applications of the simplified algorithm 

for three-dimensional issues like soil sounding location 
optimization (Chwała, 2020; 2021). This comparison is 
important due to the enormous reduction in computation 
time. Namely, three-dimensional analyses that were 
performed in this study for a constant covariance matrix 
took about 0.5 s using a standard notebook. Therefore, 
there is a great potential to improve the numerical 
efficiency in the three-dimensional probabilistic analyses 
by using the constant covariance matrix approach. 
However, the iterative procedure is needed to examine 
the impact of this assumption on the resulting bearing 
capacity probabilistic characteristics.

2  Numerical algorithm
The proposed procedure is devoted to random analyses 
of geotechnical problems in the framework of the upper 
bound limit theorem. Its engineering applications are 
directed toward foundation bearing capacity evaluation 
and slope stability evaluation for spatialy variable soil. 
The procedure is described in as general manner as 
possible; however, some information directed to the 
examples used in the study are given.  Two problems are 
investigated employing the proposed iterative algorithm, 
i.e., the algorithm proposed by Chwała (2019) for 3-D 
bearing capacity analysis, and the algorithm proposed 
by Chwała and Puła (2020) and Chwała and Kawa (2021) 
for two-layered soil bearing capacity calculation. As 
mentioned in the previous section, the procedure is 
based on the determination of the covariance matrix, 
which corresponds to the actual geometry of failure. The 
components of the covariance matrix are established via 
Vanmarcke spatial averaging, and the necessary formulae 
have to be derived independently for each problem (those 
for the three-dimensional bearing capacity are given by 
Chwała (2019), and for two-layered soil by Chwała and 
Puła (2020)). As indicated earlier, the above-mentioned 
algorithms use one iteration of the covariance matrix, 
meaning that after determination of the covariance matrix 
(which is based on the failure geometry that was obtained 
for uncorrelated soil strength parameters, see details 
in the algorithm description below), the correlated soil 
strength parameters are generated. Then, they are used to 
find the optimal failure geometry and the corresponding 
final bearing capacity. However, there is an inconsistency 
in the above approach, which is that the optimal failure 
geometry differs from the failure geometry for which the 
covariance matrix was established. This may introduce 
additional uncertainty in the observed results, which 
can be eliminated by the iterative procedure that is 
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proposed in this study. In the algorithm detailed below, 
the covariance matrix is determined as many times as 
the assumed number of iterations N. The difference 
between the subsequent covariance matrices decreases 
when the number of iterations increases. To ensure the 
generalisability of the algorithm (i.e., the possibility that it 
can be used for various geotechnical problems), its layout 
is as universal as possible. For further discussion, the 
following algorithm is denoted as ‘A’. 

Step 1. Preliminary assumptions. At the beginning 
stage, information about the initial random field 
characteristics of the soil spatial variability, is required. 
This information consists of a mean value μ, the point 
variance σ2, the type of probability density function, and 
the scale of fluctuation θ (or scales of fluctuation if they are 
distinguished in the vertical and horizontal directions). 
Moreover, the random field correlation structure is 
assumed; the most commonly used covariance functions 
are Gaussian, see Eq. (1), and Markov, see Eq. (2) (see 
Fenton and Griffiths, 2008). The stationary and separable 
random fields are assumed in the algorithm. 
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where, θx, θy, and θz are scales of fluctuation in the 
specified directions, and Δx, Δy, Δz are distances along 
x, y and z directions. If two soil strength parameters are 
described by random fields (e.g. angle of internal friction 
and cohesion), the correlation ratio ρ between them can 
be included in the analyses (in this case, the size of the 
covariance matrix from step 4 is enlarged; for more details 
see Puła and Chwała, 2015). Next, the corresponding 
failure mechanism has to be chosen or established. The 
failure geometry has to be kinematically admissible 
according to the upper bound theorem. 

Step 2. Generation of independent soil strength 
parameters. According to the initial random field 
characteristics (μ, σ2, and the type of probability density 
function), an appropriate number of independent soil 
strength parameters γ0=γi

0 are generated using a random 
number generator. This number is equal to the number of 
dissipation regions in the considered failure mechanism n 
(i=1,…,n). If two soil strength parameters are considered, 
both values are generated for each dissipation region. 

Step 3. Determination of the optimal failure geometry. 
For soil parameters γ0, the value of the corresponding 
upper bound limit load p0 (bearing capacity) is 

computed based on the total energy dissipation in the 
failure mechanism. However, it is necessary to find the 
minimum upper bound limit load, and the optimal failure 
geometry is searched using a dedicated optimisation 
procedure. Thus, the optimal failure geometry ∆0 and the 
corresponding upper bound limit load p0 are determined. 
The optimisation procedure should be chosen individually 
for the considered problem, and there are no specific 
restrictions on this issue. 

Step 4. Determination of covariance matrix and 
generation of correlated soil strength parameters. The 
covariance matrix C0 is determined based on the optimal 
failure geometry ∆0. The size of the matrix is n × n (or 2n × 2n 
if two correlated soil strength parameters are considered), 
and the matrix is symmetrical and positive definite (thus, 
the Cholesky decomposition exists, see e.g.,  Horn, 1985). 
The components of the covariance matrix between two 
dissipation regions can be derived from the following 
formula (for more details see Puła 2004; 2007 or Puła and 
Chwała, 2015): 
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Where indexes i and j run from 1 to the number of 
dissipation regions n in the failure mechanism, and V1 and 
V2 are the integration regions (section, surface, or volume). 
Based on C0, the independent soil strength parameter 
vector γ0 is transformed into the correlated parameter 
vector γC1 by calculating the product of standardized 
γ0 vector and triangular matrix which is the result of 
Cholesky decomposition of the covariance matrix C0 (for 
more details, see Puła and Chwała, 2015 or Chwała 2019). 

Step 5. Beginning of the iterative procedure. Set k=1, 
and proceed to step 6. 

Step 6. Set k=k+1. Using the optimisation procedure 
from step 3 for the correlated soil parameters γCk, the 
optimal failure geometry ∆k and corresponding upper 
bound limit load pk are calculated. 

Step 7. Determine the covariance matrix Ck for the 
optimal failure geometry ∆k. Based on Ck, the independent 
soil strength parameter γ0 is transformed into the 
correlated parameter γCk+1 using the covariance matrix Ck. 

Step 8. Using the optimisation procedure from step 3 
for the soil parameters γCk+1, the optimal failure geometry 
∆k+1 and corresponding upper bound limit load pk+1 are 
calculated.

Step 9. If k≥kmax, proceed to step 10; otherwise, proceed 
to step 6. The maximum number of iterations kmax can be 
assumed arbitrarily after investigation of the convergence 
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of the results. Additionally, different conditions for 
stopping the procedure are possible.

Step 10. For the end of the numerical procedure, the 
last values of the vector ∆kmax

 and pkmax
 are the optimal 

failure geometry and the corresponding upper bound 
limit load, respectively. 

First, the above steps of the algorithm can be 
developed and adjusted in an individual pattern to be 
suitable for specified issues that are examined, such as 
slope stability or foundation bearing capacity. 

Steps 2 to 10 are repeated N times, where N denotes 
the number of Monte Carlo realisations. Generally, the 
choice of the number N determines the accuracy that 
is obtained, i.e., a greater N provides more accurate 
estimations. Thus, a reasonable compromise between 
accuracy and computation time must be established. The 
overall computational efficiency can be improved using 
a framework that is characterised by faster convergence, 
such as subset simulation (Au and Beck, 2001). 

As discussed above, the difference between 
subsequent covariance matrices Ck and Ck+1 is expected 
to decrease when the iteration number k increases. 
This suggests that there is a decreasing tendency in the 
differences between subsequent bearing capacities pk 
and pk+1 and failure geometry parameters ∆k,i and ∆k+1,i. The 
tendency can be expressed by Eq. (4).
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The values resulting from Eq. (4) are influenced by 
numerical errors that are caused by finite numerical 
accuracy and the procedure that ensuring the positivity 
of the covariance matrix. However, a specified iteration 
number k can be found, for which the difference between 
two subsequent values from Eq. (4) becomes negligible 
or equal to the numerical accuracy. Moreover, due to the 
results described in the next sections, the stabilisation is 
observed for a relatively small value of k. An increase in 
the iteration number kmax causes a proportional decrease in 
computational efficiency. However, for some engineering 
problems, the differences between p1 and pk (where k→∞) 
should be relatively small or even negligible. Therefore, 
in such cases, the computational efficiency can be 
significantly improved using only one or two covariance 
matrix iterations. One covariance matrix can also be 
determined for all Monte Carlo simulations, and the natural 
choice is to determine it for the failure geometry, which 
corresponds to the expected values of the soil strength 
parameters. The idea was first proposed by Puła (2004) 

and discussed later for a two-dimensional Prandtl failure 
mechanism by Puła and Chwała (2015). In this study, a 
simple general algorithm for using a constant covariance 
matrix is proposed and used for three-dimensional 
bearing capacity evaluation and bearing capacity of two-
layered soil. In the numerical example section, results 
for both approaches are discussed. For each case, the 
algorithm that is based on the constant covariance matrix 
may provide sufficient accuracy for engineering practice, 
and it provides a dramatic improvement in computational 
efficiency. However, a previous investigation is required if 
the constant covariance matrix is to be used in numerical 
analyses. To illustrate the algorithm layout, the flowcharts 
are shown in Fig. 1. The path denoted by ‘A’ represents the 
ten steps described above, and the path ‘B’ represents a 
slight modification of ‘A’, where only Step 3 differs. The 
difference is a distinct way to determine the optimal 
failure geometry, i.e., in the path ‘B’ the optimal failure 
geometry is established for the expected values of the soil 
strength parameters. Path ‘B’ can be utilised to speed up 
the convergence of the results when the iterative procedure 
is used. The distinct path ‘C’ is the algorithm in which a 
constant covariance matrix is utilised (the covariance 
matrix in Step 3 in the path ‘C’ is determined only once for 
all Monte Carlo simulations).      

  

Figure 1: The three algorithms discussed in the study. Path ‘A’ is 
the base iterative algorithm, which is described in detail in the 
text, the path ‘B’ differs only from ‘A’ in Step 3 (see the description 
in the text), and the path ‘C’ is dedicated to a constant covariance 
matrix. Both ‘A’, ‘B’, and ‘C’ are repeated N times in the Monte Carlo 
framework.
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3  Application of the iterative 
algorithm – bearing capacity of 
two-layered soil

3.1  Preliminary assumptions and problem 
definition

As the first numerical example, the random bearing 
capacity of two-layered soil was analysed via the iterative 
algorithm described above. The optimisation procedure 
and formulae for the covariance matrix components 
were assumed according to a previous study (Chwała 
and Puła, 2020) and are not repeated here. Thus, the 
optimisation procedure that is based on the simulation 
annealing (Kirkpatrick et al., 1983; Kirkpatrick, 1984) 
was used to search for the optimal failure geometry (the 
geometry for which the bearing capacity reaches its 
minimum). The corresponding failure geometry that is 
adapted to the probabilistic analyses is shown in Fig. 2. 
Note that the failure mechanism shown in Fig. 2 is for the 
case of the homogenous sand layer as the top layer and 
spatially variable clay as a bottom layer. This scenario 
describes the situation of working platforms, where the 
top layer homogeneity results from a man-made layer. 
In this example, the boundary between two soil layers 
is assumed to be deterministic, i.e., its depth is constant 
in Monte Carlo analyses; however, generally, this issue 
is more complicated (e.g., Ghanem and Brząkała, 1996; 
Bagińska et al., 2020; Rainer and Szabowicz, 2020).

First, as a numerical procedure, the iterative 
algorithm that is denoted by ‘A’ in Fig. 1 was used. The 
assumed iteration number is k=6; thus, six values of the 
bearing capacity pk are obtained for each Monte Carlo 
simulation (k=1,…,6). According to a study by Chwała and 
Puła (2020) and Fig. 2, there are 16 dissipation regions in 
the failure mechanism; thus, in Step 2, 16 independent 
values of undrained shear strength are generated, and as 
a result, the size of the covariance matrix is 16 × 16. Note 
that the considered failure mechanism is for plane-strain 
conditions; however, the spatial averaging is performed 
in three dimensions. The Markovian covariance function 
is given in Eq. (2) is used in determining the covariance 
matrix component. The results obtained using algorithm 
‘A’ were juxtaposed with those obtained using algorithm 
‘C’ (see Fig. 1). As mentioned above, the algorithm ‘C’ 
relies on the constant covariance matrix concept, which 
means that the covariance matrix is determined only once 
for the expected soil strength parameter values (here, 
the parameters are the expected values of the undrained 

shear strength). To identify the differences between both 
approaches, the results for both algorithms were combined 
and are shown in the same figure. Therefore, for the 
algorithm ‘C’, k=0 is assigned; however, for algorithm ‘A’; 
k=1, k=2, k=3, k=4, k=5, and k=6 are assigned (depending 
on the iteration number). 

3.2  Analysed scenarios

Eight scenarios were considered for the bearing capacity 
of two-layered soil. Two averaging lengths are considered 
(they can be interpreted as shallow foundation lengths), 
i.e., a a=2.0 m and a=8.0 m. The anisotropic correlation 
structure in the undrained shear strength random field 
is assumed. The following scales of fluctuation were 
included in the analyses, for the vertical one: θv = 0.5 m, 
and θv = 1 m, and for the horizontal one: θh = 2 m, and θh 

= 10 m. The values of vertical scale of fluctuation were 
motivated by the results obtained from field investigations 
and earlier studies (e.g., Phoon and Kulhawy, 1999; 
Stuedlein et al., 2012; Bagińska et al., 2016; Pieczyńska-
Kozłowska et al., 2017). Note that analysing correlation 
length for spatially variable soil is a challenging task that 
still attracts researchers interest (e.g., Ching et al., 2018; 
Viviescas et al., 2021). The undrained shear strength was 
described via a lognormal random field characterised by 
the Markovian covariance function (Eq. 2), with the mean 
value μcu

 = 9 kPa and coefficients of variation vcu
 = 0.5. In 

this scenario, a linear trend in undrained shear strength 
is also considered. The included trend is 9 kPa/m starting 
from the bottom layer. The trend consideration is based 
on the recent algorithm by Chwała and Kawa (2021). For 
the homogenous sand layer, the friction angle φ=35°, and 
cohesion 1 kPa are assumed. 

Figure 2: Failure geometry for two-layered soil for the probabilistic 
case. The indicated points and lengths are used to determine the 
failure geometry.   
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3.3  Results

According to the algorithms presented in Fig. 1, the 
number of realisations N must be accepted. In this study, 
the number N equals 200 for both two-layered soil and 
three-dimensional case. This relatively low value is due 
to the intention of comparison between both approaches, 
but not the precise estimation of the mean and standard 
deviation of bearing capacity. To make comparison 
possible, the same set of independent soil strength 
parameters (see Step 2 in Fig. 1) is used in algorithm ‘A’ 
and algorithm ‘C’. Eight randomly selected results among 
200 Monte Carlo realizations for the case of θh=2 m, θv=1 
m and a=2 m are shown in Fig. 3. The greatest differences 
in bearing capacity are observed between the constant 
covariance matrix (k=0) and the first iteration in algorithm 
‘A’ (k=1) and between the first and the second iterations in 
algorithm ‘A’ (k=1, k=2). For the next iterations, the values 
of bearing capacity tend to stabilize.  

The obtained results for two-layered soil provided as 
bearing capacity mean values and standard deviations are 
shown in Fig. 4a and Fig 4b, respectively. 

As shown in Fig. 4a, the bearing capacity mean values 
are in a narrow range, the greatest differences occur in 
a range for k from 0 to 2 (what corresponds to the effect 
shown in Fig. 3 for individual realizations); however, the 
bearing capacity mean values are almost constant for k in 
a range from 2 to 6. This means that further covariance 
matrix iteration has no significant impact on the mean 
value estimates in the considered example, as shown in 
Fig. 4b, the analogous situation is observed in the case of 
bearing capacity standard deviation. Analogous reslts for 
for vertical scale of fluctuation θv=1 m are shown in Fig. 5. 

In Fig. 5a and Fig, 5b, the bearing capacity mean value, 
and bearing capacity standard deviations are shown, 
respectively.

As shown in Fig. 5, both the bearing capacity mean 
value and standard deviation are very close to each other 
for all considered values of k. The greatest differences in 
Fig. 4a and Fig. 5a are observed for bearing capacity mean 
values for the horizontal scale of fluctuation θh=2 m and 
averaging length a=2 m (case k=0 and k≥2; and case, k=1 
and k≥2). The obtained standard deviation curves (see Fig. 
4b and Fig. 5b) are similar for all cases. 

Figure 3: Eight randomly selected results among 200 Monte Carlo 
realizations for the case of θh=2 m, θv=1 m, and a=2 m.

Figure 4: Bearing capacity mean values as a function of covariance 
matrix iteration number (a). Bearing capacity standard deviations 
as a function of covariance matrix iteration number (b). Case k=0 
is for the constant covariance matrix. Results for two-layered soil, 
vertical scale of fluctuation θv=0.5 m,, foundation width b=1 m and 
averaging lengths a=2 m and a=8 m.
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4  Application of the iterative 
algorithm – three-dimensional 
bearing capacity for undrained 
conditions
4.1  Preliminary assumptions and problem 
definition

As the second numerical example, the random bearing 
capacities of square and rectangular foundations were 
analysed via the iterative algorithm described above. The 

optimisation procedure and formulae for the covariance 
matrix components were assumed according to a previous 
study (Chwała, 2019) and are not repeated here. Thus, the 
optimisation procedure that is based on the simulation 
annealing (Kirkpatrick et al., 1983; Kirkpatrick, 1984) 
was used to search for the optimal failure geometry (the 
geometry for which the bearing capacity reaches its 
minimum). A rough foundation base is assumed, and 
therefore, the corresponding failure geometry is adapted 
to the probabilistic analyses, and is shown in Fig. 6.

First, as a numerical procedure, similarly as in the 
previous example, the iterative algorithm ‘A’ (see Fig. 1) 
is used. The assumed iteration number is k=6; thus, six 
values of the bearing capacity pk are obtained for each 
Monte Carlo realisation (k=1,…,6). According to the study 
by Chwała (2019) and Fig. 6, there are 30 dissipation 
regions in the failure mechanism; thus, in Step 2, 30 
independent values of undrained shear strength are 
generated (the size of the covariance matrix is 30 × 30). 
The Gaussian covariance function given in Eq. (1) is used 
in determining the covariance matrix components. The 
results obtained by algorithm ‘A’ were juxtaposed with 
those obtained using algorithm ‘C’ (algorithm ‘C’ is based 
on a constant covariance matrix, see Fig. 1). To identify the 
differences between both approaches, the results for both 
algorithms were combined and are shown in the same 
figures. Therefore, for the algorithm ‘C’, k=0 is assigned; 
however, for algorithm ‘A’; k=1, k=2, k=3, k=4, k=5, and k=6 
are assigned (depending on the iteration number).  

4.2  Analysed scenarios

Six scenarios were considered for the three-dimensional 
failure mechanism. Two shapes of the shallow foundation 
are assumed, i.e., square foundation (b=1.0 m and a=1.0 
m) and rectangular foundation (b=1.0 m and a=4.0 m). 
The isotropic correlation structure of the random field 
(which describes undrained shear strength) was examined. 
The following scales of fluctuation were included in the 
analyses: θv=θh=θ=0.5 m, θ=1 m, θ=2 m, θ=4 m, and θ=6 m. 
The range of values from 0.5 m to 1 m was motivated by the 
results obtained from field investigations and earlier studies 
(e.g., Bagińska et al., 2016; Pieczyńska-Kozłowska et al., 
2017); however, greater scales of fluctuation are motivated 
mostly by the testing purposes of the used algorithms. The 
undrained shear strength was described via a lognormal 
random field characterised by the Gaussian covariance 
function (Eq. 1), with the mean value μcu

=100 kPa and 
coefficients of variation vcu

==0.5. In this scenario, a linear 
trend in undrained shear strength is not considered. 

Figure 5: Bearing capacity mean values as a function of covariance 
matrix iteration number (a). Bearing capacity standard deviations as 
a function of covariance matrix iteration number (b). Case k=0 is for 
the constant covariance matrix. Results for two-layered soil, vertical 
scale of fluctuation θv=1 m,, foundation width b=1 m and averaging 
lengths a=2 m and a=8 m.
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4.3  Results

The number of simulations N in the Monte Carlo method is 
assumed as N=200, this is in analogy to the first example 
of two-layered soil. To make the comparison possible, the 
same set of independent soil strength parameters (see 
Step 2 in Fig. 1) is used in Algorithm ‘A’ and Algorithm ‘C’. 
The obtained results for square footing are shown in Fig. 
7. In Fig. 7a and Fig, 7b, the bearing capacity mean value 
and bearing capacity standard deviations are shown, 
respectively.

As shown in Fig. 7, the bearing capacity mean values 
are in a narrow range, the greatest differences occur in a 
range of k from 0 to 2; however, the bearing capacity mean 
values are almost constant for k from 2 to 6. This means 
that further covariance matrix iteration has no impact 
on the mean value estimates. The analogous situation 
is observed in the case of bearing capacity standard 
deviation, as shown in Fig. 7b. Analogous results for 
rectangular footing are shown in Fig. 8. In Fig. 8a and Fig, 
8b, the bearing capacity mean value and bearing capacity 
standard deviations are shown, respectively.

As shown in Fig. 8, both the bearing capacity mean 
value and standard deviation are very close to each other 
for all considered values of k. The greatest differences are 

observed for the bearing capacity mean values for the 
scale of fluctuation θ=1 m and θ=0.5 m for the case k=0, 
and k≥2; and case k=1, and k≥2. 

5  Discussion on the results
The results obtained in the two previous sections are for 
different applications of the random failure mechanism 
method (RFMM). The first concerns the bearing capacity of 
two-layered soil when the failure mechanism is based on 
two-dimensional simplification, and the second concerns 

Figure 6: Three-dimensional failure geometry of the rough 
foundation base for the probabilistic case. The indicated angles and 
lengths are used to determine the failure geometry.

Figure 7: Bearing capacity mean values as a function of covariance 
matrix iteration number (a). Bearing capacity standard deviations as 
a function of covariance matrix iteration number (b). Case k=0 is for 
the constant covariance matrix. Results for a square foundation of 
size 1 m x 1 m.
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the bearing capacity of the rectangular foundation in the 
fully three-dimensional case. In both cases, soil spatial 
variability is considered three-dimensional. According to 
the obtained results, the differences between the approach 
with constant covariance matrix ‘C’ (k=0) and the iterative 
approach ‘A’ (k=1, k=2, k=3, k=4, k=5, and k=6) are generally 
in a narrow range. As expected, the greatest differences 
are observed between the constant covariance matrix 
approach and the iterative one for the first two iterations of 
the covariance matrix. However, despite the stabilisation 
of bearing capacity mean values and standard deviation 
for two and more iterations (k), some fluctuations can be 
observed, as shown in Fig. 4, Fig. 5, Fig. 7, and Fig. 8. The 
range of this fluctuation is not important for this study 

and does not impact the conclusions that can be drawn 
based on the shown examples. In the author’s opinion 
there are two main sources for this fluctuation in the case 
of iteration indexes greater than 2, the first possibility 
is the numerical accuracy, especially in the calculation 
of high-order integrals, which is calculated to obtain 
the covariance matrix, another issue is the accuracy of 
the optimization procedure, which finds approximation 
to the global minimum of the objective function, not 
the exact global minimum. The second source can be 
caused by small modifications of the covariance matrix 
that are introduced to ensure the positive definiteness of 
the matrix (the modification occurs if the matrix is not 
positive definite). In the author’s opinion, those factors 
combined may cause the observed small fluctuations in 
bearing capacity, mean values and standard deviation. 
The final accuracy can be influenced also, by the way, the 
described algorithms work. It can be observed especially 
for the longer foundations for which the averaging 
region can be significantly greater than the scale of 
fluctuation. Therefore, one additional assumption that is 
not discussed earlier has to be introduced here, that the 
foundation is rigid. Consequently, it is assumed by default 
in the numerical examples described above that the wall 
rests on the foundation and provides infinite foundation 
stiffness. As a result, the soil strength parameters can 
be determined as averages of large regions. Certainly, 
all above mentioned uncerntenties may overlap in the 
iterative procedure. In Fig. 9 a dependency of bearing 
capacity mean values, standard deviations and variation 
coefficient on undrained shear strength coefficinat of 
variation are shown. The case of two-layered soil is 
considered. To maintain the clarity of the plot only results 
for constant covariance matrix (k=0) and the last result for 
iterative procedure (k=6) are shown in Fig. 9. Three values 
of cu coefficient of variation are analysed; namely, vcu

=0.25, 
vcu

=0.5 and vcu
=1.0. A very slow increase in the differences 

between mean values and standard deviations of bearing 
capacity in both cases (k=0 and k=6) is observed with 
the increase of vcu

 (see Fig. 9a and Fig.  9b). Despite those 
differances, the resulting bearing capacity coefficient of 
variation is almost the same for each considered vcu

 (see 
Fig. 9c).   

All numerical results shown in this study were 
performed for relatively small number of Monte Carlo 
realisations. However, as mentioned earlier in this study 
the main goal is to examine the impact of using more 
iterations of the covariance matrix. For this particular 
approach the accurate determination of bearing capacity 
mean value and standard deviations is not necessary. 
Despite this, in Fig. 10 an example of such analyses is 

Figure 8: Bearing capacity mean values as a function of covariance 
matrix iteration number (a). Bearing capacity standard deviation as 
a function of covariance matrix iteration number (b). Case k=0 is for 
the constant covariance matrix. Results for a rectangular foundation 
of size 1 m x 4 m.
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shown to demonstrate that even relatively low number 
of Monte Carlo realisations (N = 200) provides quite good 
estimation of bearing capacity mean values and standard 
deviations. The conclusions from the study are presented 
in the next section.

6  Conclusions and final remarks
The study propose an original iterative algorithm (path ‘A’ 
or ‘B’ in Fig. 2) for the upper bound analyses of geotechnical 
problems with consideration of soil strength spatial 
variability. The resulting limit loads are realisations of a 
random variable for which probabilistic characteristics 
must be determined using the Monte Carlo method. The 
use of the iterative algorithm ensures the consistency 
between the failure geometry and the covariance matrix, 
from which the average soil strength parameters are 
determined - the averaging procedure is following 
Vanmarcke’s spatial averaging (Vanmarcke, 1977a, 1977b, 
1983). Moreover, the general algorithm for using a constant 
covariance matrix is presented in the study. Performing 
an analysis via the algorithm based on the constant 
covariance matrix (see algorithm ‘C’ in Fig. 2) provides 
a dramatic improvement in computational efficiency. 
Therefore, the possibility of using a constant covariance 
matrix is very promising for practical applications and 
three-dimensional analyses. The main objective of the 
study is to investigate weather these algorithms give 
similar results. According to the delivered examples it 

is shown that, the constant covariance matrix approach 
provides satisfactory results. However, the investigation 
required a comparison of the results provided by both 
approaches. This was done through the iterative algorithm 
proposed in this study. However, despite good agreement 

Figure 9: Bearing capacity mean values (a), standard deviations (b), and coefficient of variations (c) as a function of coefficient of variation of 
undrained shear strength. Two-layered soil considered with homogenous top layer (all parameters not mentioned here are the same as for 
earlier analyses). 

Figure 10: Stabilisation of bearing capacity mean values (a) and 
standard deviations (b) for the iterative approache for k=6.
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between the two considered approaches for the analysesd 
scenarios, i.e., bearing capacity of rectangular foundation 
and two-layered soil under plane strain assumption, other 
geotechnical applications need to be verified individually. 
Therefore, the conclusions are only limited to those two 
scenarios.   

The proposed iterative algorithm was utilised in 
this study to evaluate the bearing capacity of shallow 
foundations. Two cases were considered, i.e., the bearing 
capacity of two-layered soil, and the three-dimensional 
analyses, both were performed for a variety of foundation 
shapes and scales of fluctuation. To summarize, the 
following conclusions can be drawn:
1.	 The study presents an original iterative algorithm 

for upper bound analyses of geotechnical problems 
with the inclusion of soil strength spatial variability. 
The proposed algorithm can be applied not only to 
bearing capacity evaluation, as shown in the study, 
but also for other applications like slope stability 
or retaining wall analyses. The use of the iterative 
procedure ensures consistency between the failure 
geometry and the covariance matrix; therefore, the 
algorithm allows the recognition and control of the 
impact of this issue on the resulting estimates. Basing 
the iterative algorithm on the upper bound theorem 
provides the opportunity to utilise it as a reference for 
other probabilistic methods.

2.	 This paper shows the possibility of applying the 
iterative algorithm for shallow foundation random 
bearing capacity evaluation. Moreover, the proposed 
algorithm allows the authentication of previous 
results (e.g., Chwała, 2019; Chwała and Puła, 2020) 
and indicates that for the undrained conditions, two 
iterations (k=3 in the algorithm ‘A’ shown in Fig. 2) for 
the covariance matrix determination is sufficient to 
obtain stabilisation of the results. Additionally, the 
influence of the iteration number is limited, and thus, 
the results obtained for a small number of iterations 
and a constant covariance matrix are trustworthy.

3.	 Scenarios analysed by the iterative algorithm were 
analysed again using the algorithm based on the 
constant covariance matrix (see the algorithm ‘C’ 
in Fig. 2). The obtained results are presented to 
allow easy comparison between both approaches 
(see Figs 4, 5, and Fig. 7, 8). The results provided by 
the algorithm, which use the constant covariance 
matrix concept, are very close to those obtained by 
the iterative procedure. This is very promising for 
further application of the algorithm ‘C’ in solving 
practical problems, e.g., optimal placement of soil 
soundings (Chwała, 2020; Chwała, 2021). It is also the 

most important result of the study that opens up the 
possibility of using the constant covariance matrix. 
Thus, a dramatic improvement in the computational 
efficiency is possible (analysing one realisation 
of a three-dimensional bearing capacity problem 
including soil strength spatial variability, takes about 
0.5 s for a standard notebook). To summarize, the 
algorithm based on the constant covariance matrix 
can be used for three-dimensional random bearing 
capacity problems and other issues that require high 
computational efficiency.
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