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Abstract
The paper deals with evacuation time estimation using a fuzzy meta-model inferred from data 
using a combination of fuzzy decision trees (to construct the rule base) and evolutionary tuning 
(to optimize the membership functions). It uses real data – collected from existing literature. The 
paper first covers some basic facts concerning evacuation in road tunnels and its simulation. It then 
proceeds to discuss evolutionary tuning of fuzzy systems and fuzzy decision trees and describes 
the proposed approach. It shows that this approach improves upon previous results achieved using 
a purely evolutionary approach. 
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Introduction

The area of machine learning currently offers a multitude of continually improving tools 
for automatic construction and tuning of models, some of which are in widespread use 
across many application areas. These may include the (currently very popular) artificial 
neural networks, support vector machines, decisions trees, ensembles of models – such 
as random forests, gradient tree boosting – and many other approaches. There is one 
common issue with most of these generic methods as regards their interpretability. 
All of the models mentioned, perhaps with the exception of very small decision trees, 
are difficult to interpret. While this is not a major problem in many areas, it becomes 
a significant issue if they are to be applied in others.

Interpretability is Required

The application we study in the present paper is that of evacuation speed estimation 
for road tunnels. Now in this particular area interpretability is strongly called for. 
Indeed, if safety-related decisions are to be made using the model, it is imperative that 
its structure be clear, its inner workings verifiable and its predictions well understood. 
Also, one may want to use the model to extract human-understandable knowledge 
about the ways in which various factors influence the evacuation times. These may in 
turn be used to derive more robust, effective and cost-efficient guidelines for selecting 
tunnel equipment and for other related tasks. For all of these reasons, interpretability 
is the key property that we seek in the model.
This is the main reason we have selected the fuzzy inference system as the model of 
choice. Fuzzy inference systems have long ago distinguished themselves by their ability 
to express interpretable models of complex systems. Their key characteristics include 
the ability to utilize vague expert knowledge, to formalize linguistic statements and to 
act in the role of controllers as well as models.

The Ability to Learn from Data is Required

An admitted weakness of most fuzzy systems is their lack of an in-built learning 
mechanism. Fuzzy inference systems have conventionally been designed by experts, 
who would have set-up the linguistic rules and the corresponding membership 
functions by hand. Such fuzzy inference systems (FIS) are by definition interpretable, 
but they are also necessarily suboptimal. While experts may be reasonably good at 
determining linguistic rules (if they are fairly well-acquainted with fuzzy logic), they 
almost invariably perform very poorly at determining numeric parameters (in this case 
the precise shapes of the membership functions).
For these reasons, a number of research teams have explored ways of constructing 
fuzzy inference systems automatically. Perhaps the most notable among these are 
hybrid systems such as the adaptive neuro-fuzzy inference system (ANFIS) [1] and 
evolutionary approaches as exemplified by the various types of genetic-fuzzy systems 
[2–4].
In a previous paper [5] we have shown that it is possible to significantly improve upon 
a baseline hand-designed fuzzy inference system for evacuation speed estimation using 
evolutionary tuning. We have experimented with several evolutionary methods to this 
end and we have designed a particular decoder, which ensures that any combination 
of evolutionarily-selected parameters, results in a valid FIS. One important limitation 
of those results was that our method was not able to automatically co-evolve the rule 
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base of the FIS as well. While we have experimented with several ways of encoding 
the rules (more details in [5]), the results were underwhelming – possibly due to an 
excessive enlargement of the searched space.

Evolutionary Optimization and Fuzzy Decision Trees

Motivated by these considerations, we now seek to supplement the evolutionary 
approach, which has shown itself useful in tuning the membership functions, with 
a separate mechanism for inducing the rules. One family of methods, which has in the 
past shown itself particularly efficient in constructing fuzzy rules from data, is that 
concerned with fuzzy decision trees. Much like standard, crisp decision trees, which 
can be transformed into crisp rule bases, a fuzzy decision tree can easily be converted 
into a fuzzy rule base.
Thus, the approach proposed in the present paper is to tune the numeric parameters 
of the fuzzy model using particle swarm optimization (PSO) and to construct the rule 
base in the form of a fuzzy decision tree using a variant of the fuzzy ID3 algorithm. Both 
of these ideas as well as the way in which we propose to combine them into a single 
system will be described in detail hereinafter, along with experimental results.

1. Evacuation in Road Tunnels

Road tunnels are nowadays an important part of traffic infrastructure since they shorten 
the paths in mountainous regions. Shorter travel times lead to higher economical 
effectiveness. On the other hand, evacuation of people from the tunnel during 
unexpected event such as fire is a complicated procedure. Tunnel evacuation paths 
are usually straightforward, but fire has to be detected by the control system of the 
tunnel first, then people in the tunnel have to be informed and persuaded to start the 
evacuation. Finally safe conditions during the evacuation process have to be provided 
for the longest available time. Heterogeneous technological equipment is installed in 
the tunnel to provide all mentioned tasks. Impact of each technological subsystem on 
the safety can be estimated more likely by simulations because the tunnel cannot be 
closed at any time during its continuous operation.

2. The Role of Simulation

One of the problems in the area of evacuation speed estimation is the considerable 
difficulty connected with acquiring real data. To carry out any very extensive 
experiments is hardly practicable due to the excessively large costs this would incur. 
Any real experiments also have to abstract from many details, because a perfectly 
realistic reconstruction would endanger human persons in a degree similar to a real 
emergency. Thus, experiments that have actually been carried out to date are of very 
limited scale. Furthermore, behaviour of people under critical conditions is largely 
unpredictable and cannot be precisely estimated using simple evacuation training. This 
is one of the reasons why a crucial role in this area is played by simulation. It provides 
a cost-effective way to experiment with a number of different parameter configurations 
in a relatively short amount of time and given a faithful model, it can help to estimate 
the evacuation time more accurately.
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3. The Tunnel Simulator TuSim 

Tunnel simulator (TuSim) is a PLC-based system which can simulate all devices of the 
tunnel technological equipment by the software inside the PLC. Equipment of several 
tunnels, control of the traffic sequences and tunnel reflexes are also implemented. 
Tunnel reflex is a reaction of the control system to an unexpected event in the tunnel like: 
complete or partial power failure, fire, traffic alarm or pre-alarm, lighting malfunction, 
SOS button, physical measurements alarm or pre-alarm [6]. There are many graphical 
screens to visualize the state of each subsystem of the technological equipment – at 
least one for each subsystem. The simulation of evacuation process can be seen on 
the part of the traffic control screen on Fig. 1. Numbers on the figure indicates the 
count of the persons in each zone. The evacuation model is directly interconnected 
with the traffic model and simulation of technological equipment. Process of the real-
time simulation experiment is complex from placement of the vehicles, detection of 
unexpected event, tunnel reflex, closing of the tunnel and evacuation process. That is 
the significant advantage over other available evacuation simulation tools described in 
the next chapter.

Fig. 1. Simulation of evacuation in road tunnel

4.  Evacuation Simulation

There are several software tools available to simulate the evacuation process under fire 
conditions and smoke toxicity such as FDS+EVACS [7], GridFlow [8], BuildingExodus [9]. 
Smoke influences the movement of people in several ways such as lower visibility, way-
finding, walking speed and physiological aspects. 
Three different data sets are available concerning the walking speed and behaviour 
of people in smoke. The first one by Jin is rather old [10], the second one is based on 
more recent work by Franzitsch and Nilsson [11], the third one by Fridolf et.al [12] is 
the most recent. We have decided to analyse only the first two because we wanted to 
compare the fuzzy decision trees with the model described in our previous article [5]. 
Jin analysed the movement in two types of smoke: irritant and non-irritant. As can be 
seen in Fig. 3, speed decreased even if visibility in smoke (extinction coefficient) was 
below one. Frantzich and Nilsson also analysed the same problem with different smoke 
types, irritation simulation, population structure, different corridor length and complex 
structure. Therefore, these data sets cannot be easily exchanged and interpretation of 
the results has to be considered carefully. Ronchi et al. [13] applied both data sets and 
their interpretations to simulate the impact of smoke with several simulation software 
tools. General relationship between walking speed and density of persons in clear 
conditions can be seen on Fig. 2. 
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Fig. 2. Walking speed vs. density [14].

Fig. 3 shows results of both mentioned experiments. It’s easier to follow and approximate 
the trend of decreasing the speed in Jin’s experiment, results of the newer research from 
Frantzich and Nilsson are preferred for our simulations. A wider range of the extinction 
coefficient was analysed than in Jin’s experiment and also the results of the movement 
with and without illumination were included. As can be seen illumination has markedly 
slowed down the decrease of the walking speed. This information should be included 
in our TuSim simulator evacuation model, since also the influence of technological 
equipment during an unexpected event in the tunnel should be analysed.

Fig. 3. Walking speed vs. extinction coefficient [13].
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5. TuSim Evacuation Model

With respect to the measured data from the experiments we should include the 
following factors as inputs to our model of walking speed during evacuation in the 
tunnel: density of persons on the sidewalks (pers/m2), extinction coefficient (1/m) and 
operational tunnel lighting level (%).
Operational lighting should, in the normal case, be turned to 100% when the control 
system detects an unexpected event in the tunnel. TuSim simulator can adjust the 
lighting level according to meteorological conditions on the tunnel portals, so the 
fuzzy input should not be limited to just turning the lights on and off – e.g. lighting 
failure. Implementation of the FIS into the TuSim was realized by creating the interface 
from the simulator to the existing fuzzy logic library. The solution was faster to 
implement than realization of the complete fuzzy framework and was limited only by 
the importing the existing DLL functions into the scripting language [15] of the TuSim 
visualization.

6. Genetic-Fuzzy Systems

In the past a considerable research effort has been invested into the development of 
hybrid genetic-fuzzy systems. These use genetic algorithms to automatically synthesize 
fuzzy models or controllers using data. The data is usually in the form of pairs, where  is 
an input and  is its corresponding desired output. We can then compute the error that 
the model makes on a particular dataset using some measure of the difference: , where  
is the actual output of the fuzzy model with parameters .
When applying genetic-fuzzy systems, we distinguish between two tasks [4]: 

−− Genetic tuning – which, given an existing rule base, only optimizes the numerical 
parameters of membership functions (MFs);

−− Genetic learning – which also learns the rule base (RB), i.e. it is able to create a fuzzy 
inference system from scratch.

6.1. Tuning the Membership Functions

In the case of genetic tuning, the representation of solutions is not over-complicated. 
The solution consists of genes that express: 

−− The type of the membership function (most often a triangle, a trapezoid of a Gaussian 
function [3]);

−− Several numeric parameters that determine the actual shape of the membership 
function (e.g. the position of vertices – usually 2 to 4 parameters).

7. Fuzzy Decision Trees

Fuzzy decision trees (FDT) represent a generalization of traditional, crisp decision trees. 
The difference is that in fuzzy decision trees, branching points do not split the original 
dataset into crisp sets, but rather into fuzzy sets. In other words, the attributes, which 
characterize the data samples, do not correspond to standard categorical variables, 
but can instead be considered as linguistic variables. Thus, for an FDT we might have 
a dataset with numeric values – from a certain universe of discourse, over which the MFs 
of the linguistic values will be constructed. One of the consequences of such setup is 
that several leaves may correspond to a sample with a non-zero degree of membership. 
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7.1. The Fuzzy ID3 Algorithm

When creating a decision tree – whether crisp or fuzzy – the main problem in determining 
its structure is which attribute to pick for any given branching. In the crisp version of 
the ID3 algorithm, one selects attributes, which offer the greatest information gain, i.e. 
which have the smallest classification entropy.
The notion of classification entropy can be generalized for the fuzzy setting – for 
the most part, we only have to replace the classical notion of set cardinality with the 
cardinality of a fuzzy set, when computing relative frequencies. This yields a version of 
the fuzzy ID3 algorithm.
Cardinality of a Fuzzy Set The cardinality of a fuzzy set is a sum of the degrees of 
membership for all its members (although there are also other competing definitions) 
[16]:  where U is the universe of discourse and is the membership function of a fuzzy 
set A.
Notation For the most part, we will follow the notation of [17]. Let there be n attributes  
to select from at a particular branching point – at a non-leaf node S. Let each attribute  
have  different linguistic terms. Also, let  denote the classification attribute (the output) 
with values .
Relative Frequency of a Term w.r.t. the Class The relative frequency of a linguistic 
term  with respect to the j-th fuzzy class (output term)  at a non-leaf node S is defined 
as [17]: , i.e. how many times  and   co-occur in a fuzzy sense in S over the number of 
times  itself occurs in S.
Fuzzy Classification Entropy of a Term Given these concepts, fuzzy classification 
entropy of a linguistic term  can be defined as [17]: .
Fuzzy Classification Entropy of an Attribute The classification entropy of attribute  is 
then merely a weighted sum of the entropies of its individual attributes, i.e. [17]: , where 
the weight   is determined as:  . That is to say,  is the relative frequency of linguistic term  
among all the terms of attribute .
Finally then, when constructing a fuzzy decision tree using the fuzzy ID3 algorithm, 
the procedure is to greedily select the attribute with the minimum fuzzy classification 
entropy. It is also necessary to be able to decide when to branch vs. when to add a leaf 
node. We will discuss the way in which we address this in the next section – specifically 
with regard to the proposed approach.
When forming a leaf node L we label the leaf node with the output term, which has the 
greatest cardinality in it.

8. The Proposed Approach

As mentioned in the introduction, the proposed approach combines the evolutionary 
tuning of membership functions (MFs) with a fuzzy decision tree technique for inducing 
the rule base. We will start this section by discussing the evolutionary approach and 
then proceed to the specifics of the fuzzy decision tree technique. Finally we will show 
how both of these fit together to construct the entire fuzzy inference system.
What we need to note before we proceed to any details is that in each case the 
optimization process starts from a simple hand-designed template FIS. This FIS 
determines how many input/output variables there are, how many MFs they should 
comprise and what their analytic forms should be. The template FIS need not have 
rules (they would get replaced in the course of optimization in any case) and the actual 
numerical parameters of the MFs may simply be zero-initialized.
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8.1. Tuning the MFs using Particle Swarm Optimization

In our previous paper [5] we have experimented with several evolutionary methods – 
namely with genetic algorithms, differential evolution and particle swarm optimization 
(PSO). In the present paper we will limit our attention to the PSO approach, which 
seemed to achieve the most robust results (although the other two approaches were 
not so far behind and we did not carry out any exhaustive analysis of their various 
possible parameter configurations). We use a Python implementation of PSO as 
provided in the inspyred library. Unless explicitly stated otherwise, the parameter 
settings for PSO will be as follows: the inertia, and both the acceleration coefficients 
will be set to 0.5.
The optimization criterion is to minimize the mean squared error (between desired 
and actual outputs of the FIS, given the training data). There is also a penalization term, 
which we will discuss later.
As mentioned hereinbefore, we have experimented with co-evolving the rules along 
with the MFs (i.e. the MFs and the rules were both part of the evolved individual), but 
the results were not encouraging – that is the main reason for instead applying fuzzy 
decision trees in the present work. We will nevertheless include the version of the 
experiment with co-evolution for the purpose of comparison.
We will not consider the representation in any detail, since it has already been described 
in [5]. Suffice it to say that we start with a template FIS and we concatenate its numeric 
parameters to form the genotype. A decoder is used when transforming the genotype 
into a phenotype in order to make sure that every possible genotype results in a valid 
FIS. If a FIS still yields a NaN (not-a-number) output, we penalize it with a flat penalty 
of 5.

8.2. Co-Evolving the Rules

In addition to the version of the method, which uses fuzzy decision trees to generate the 
rule base, we also include a version, which co-evolves the rules together with the MFs 
using PSO. This approach does not perform very well, but we include it nevertheless for 
the sake of comparison.
We presume that there is some maximum number of rules – in our case predefined to 
100. The rules have fixed structure – for each input/output variable we encode which 
linguistic value it takes. There is a special value, at which we drop the variable from the 
rule altogether (i.e. we encode that its value does not matter). For every rule, there is 
also a single binary parameter, which determines whether the rule is active. Only active 
rules are included in the final rule base. For regularization purposes we penalize the 
solution for every active rule by the penalty of 10. This encourages PSO to find solutions 
with compact rule bases.

8.3. Learning the Rules using a Fuzzy Decision Tree

The main approach to constructing the rule base employed in this paper is based on 
fuzzy decision trees. Thus, given the input/output variables and their membership 
functions, we employ a version of the fuzzy ID3 algorithm described above to generate 
a fuzzy decision tree. Once the fuzzy decision tree has been generated, it is easy to 
transform it into a standard fuzzy rule base by traversing all paths from the root to the 
leaves.
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We use a simple set of rules to determine whether a node should be a non-terminal 
node, or a leaf node – a leaf node is created if any of the following criteria are met:
If the maximum depth has been reached.
If repetition of attributes along a path is not allowed and we have already used all the 
attributes.
If the total cardinality of samples at the present node is lower than a predefined 
threshold (i.e. there are not enough samples, and we might just be observing noise).
In our present experiments, we do not allow for repetition of attributes along a path. 
While repeatedly applying the associated norms makes sense from a purely numerical 
standpoint and may indeed improve accuracy, repeating attributes also considerably 
impairs interpretability. Unless mentioned otherwise, the maximum depth of the FDT 
will be set to 20 in the following experiments, and the minimum cardinality to branch 
will be set to 5.
When computing relative frequencies (as well as when doing inference), some paths 
will have very low degrees of membership. In consequence, we can ignore their 
contributions without any significant loss of accuracy, thus incurring non-negligible 
performance improvements.

8.4. Using PSO and FDTs Together

To combine the evolutionary tuning of membership functions with the generation of 
fuzzy rule base using a fuzzy decision tree is a relatively straight-forward task. We know 
that in order to construct the FDT using a variant of the fuzzy ID3 algorithm, we already 
need to have the MFs. Conversely, when we create candidate MFs using PSO, we need 
rules in order to evaluate them. Thus, there is a very obvious way to combine PSO and 
FDTs: We first use PSO to create candidate membership functions. We then use these 
MFs to construct a rule base using a fuzzy decision tree. Finally, we use the resulting FIS 
to evaluate the MF candidates and proceed with PSO.
The downside of wrapping the FDT within the PSO process in this manner is that an FDT 
has to be constructed every time a candidate solution is to be evaluated. While this is 
very simple conceptually, it may be quite computationally intensive for large datasets.

9. The Experiments

In this section we will present some empirical results. These are all computed using 10-
fold cross-validation. Also, in each case 10 trials were made and their results averaged. 
The results are reported in terms of Median Absolute Error (MdAE). In each case we 
report both the results on training data (in-sample results) and testing data (out-sample 
results). Where relevant, we also report the portion of runs in which the FIS yielded NaN 
outputs.
Some of the default parameters have been described in the preceding sections, thus 
we can now focus our attention on the ones that will be changing. Let us start with 
the baseline approaches. The first baseline against which we compare our approach 
is a hand-designed fuzzy inference system for the problem (shown as “base” in the 
figures). As a second baseline, we chose crisp decision trees for regression – to this end 
we have employed the implementation from the scikit-learn Python package.
The results follow in Fig. 4. In the following sections, we will discuss them in some detail. 
The remaining portion of the paper will then consider their implications and present 
the conclusions we can draw from them.
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9.1. Crisp Decision Trees

Fig.4a shows a comparison of the results achieved using crisp decision trees under 
various configurations. The configurations are denoted as DT-n-p, where DT stands for 
crisp decision trees, n stands for the maximum number of leaf nodes and p stands for 
the minimum ratio of samples for a leaf (i.e. the number of samples required to form 
a leaf node over the total number of samples available). As we can see, the decision 
trees (unsurprisingly) do much better than the hand-designed baseline. Their results 
vary a little depending on the regularization parameters.

Fig.4:	 Comparison of several methods in terms of MdAE (smaller is better). The wider bars correspond 
to out-sample results and the narrow bars to in-sample results. Where appropriate, percentage 
of NaN outputs is also shown

In the present case, a tree with 10 leaves seems to be quite sufficient – it generalizes 
better than a tree with 20 leaves. Also, 0.05 seems to be a better fit for p than 0.1. This 
is because with 0.1 creation of a leaf requires that at least 10% of the data fall under it. 
This imposes a relatively severe limit on the depth of the resulting decision tree. In any 
case, all the results are either slightly above 0.10 MdAE or slightly below it.
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9.2. PSO with and without Rule Co-Evolution

Further results, shown in Fig.4b, represent a comparison between several PSO-based 
configurations. The e-s configuration corresponds to taking the baseline FIS (with 3 
trapezoid MFs for each I/O variable) as a template and tuning its MFs using PSO. The 
e-sr configuration also uses the baseline FIS as a template, but in addition to tuning the 
MFs, it also replaces the original rule base with one generated using co-evolution. In 
a similar way, e-lr applies co-evolution to a larger template FIS (with 7 trapezoid MFs for 
each I/O variable), for which there are no hand-designed rules.
As shown in the figure, although in the e-sr configuration, PSO is given strictly more 
control over the resulting solution, their performance deteriorates noticeably. This may 
be due to the fact that including the rules in the representation excessively enlarges the 
searched space. Simple attempts to fix this, such as increasing the size of the population 
or the maximum number of generations do not help significantly.
The performance deteriorates further when using the larger FIS in the e-lr case. Here 
too, the deterioration can probably be ascribed to a further enlargement of the searched 
space. The difference in performance is much less noticeable than that between e-s and 
e-sr. This may again be because the search space is enlarged to a much lesser degree by 
adding 16 MFs than by adding a large number of fixed-structure rules.

9.3. PSO and Fuzzy Decision Trees

Now for the proposed approach in its full form: the results are presented in Fig. 4c, and 
compared against the best performing configurations from the previous sections. The 
configurations are denoted as FDT-x-m-r. Symbol x denotes which template FIS was 
used: s means that the baseline FIS (without the rules) was used as the template and 
l denotes the larger template FIS with 7 MFs for each I/O variable. Symbols m and r 
denote the maximum depth and the minimum cardinality to branch respectively.
We have also tried varying the maximum depth and the minimum cardinality to branch, 
but found this to have minimum effect. Some of the results are presented in Fig. 5. It is 
clear that the results are better with the larger template FIS – and that class of results is 
also more robust to the other parameters.

10. Discussion of the Results

The results clearly indicate that using automatic tuning and learning methods it is 
possible to improve significantly upon the baseline hand-designed fuzzy inference 
system. Mere PSO-based tuning of membership function parameters is able to halve the 
median of the absolute error. These results can further be improved by automatically 
constructing the rules as well. An added advantage of this is that it also allows us to use 
template fuzzy inference systems, for which hand-designed rules are not available – i.e. 
we can build the FIS from scratch.
The method seems to generalize slightly better than the implementation of crisp 
decision trees we were working with. However, it is dubious whether the improvement 
is large enough to merit the vast amount of extra computational power required to 
arrive at such solution. It therefore seems necessary to search for different methods of 
determining the membership functions in the future, e.g. by generalizing the procedures 
employed by decision tree regressors.
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Fig. 5:	 A comparison of the PSO-FDT approach under several configurations. The notation is FDT-x-
m-r: x is either s for the baseline FIS template or l for the larger template; m is max. depth and 
r is min. cardinality to branch.

10.1. Meta-Modelling Tunnels

One the main takeaways from this paper is that although it is possible to fit a fuzzy model 
to the empirical data used here, the data itself is extremely sparse and contains very 
few instances. Indeed, with so few samples, it is not easy to leave a portion of the data 
aside as a validation set for hyperparameter tuning. The data is also extremely noisy. 
The provided features do not seem to have sufficient explanatory power. It is probable 
that some factors that have a large influence on the outcome were not included.
However, it is notoriously difficult to acquire real data for this kind of application and 
to carry out any extensive experiments is hardly practicable due to the large costs this 
would incur. There is also the inevitable necessity to abstract from many details of any 
actual scenario, because a perfectly realistic reconstruction would endanger human 
persons in a degree similar to a real emergency.
Most experiments that were in fact carried out in the past were done on a relatively 
small scale and under many simplifying assumptions, such as using cold and non-
irritant smoke instead of observing the effects of a real combustion. 
Given the existing simulation tools for the problem, the most reasonable approach for 
getting richer data seems to be to create a powerful and comprehensive model and 
to acquire a large amount of data through simulation. The real data, despite its being 
noisy and sparse, could be used to provide a degree of verification for such synthetic 
data. A simpler, computationally less expensive meta-model can then be made to 
approximate this synthetic data.
The idea is that fine-grained, highly realistic simulation – taking into account details 
such as the physics of airflow and other natural phenomena – can be used to provide 
rich data for subsequent approximation. This data can be computed at leisure, in an 
offline manner. The estimates themselves can then be provided rapidly, using a meta-
model and at a fraction of the computational costs associated with full simulation.
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Conclusion

We have proposed a hybrid approach combining particle swarm optimization (PSO) and 
fuzzy decision trees (FDT), to automatic creation of a fuzzy model for evacuation speed 
estimation. The results show that the approach is viable and that it can significantly 
improve upon hand-designed fuzzy inference systems as well as upon other methods 
such as evolutionary tuning of the membership functions without rule learning and co-
evolution of rules together with the membership functions.
However, the approach is also computationally expensive and it may be advisable to 
search for cheaper alternatives – e.g. by replacing PSO with a simpler and greedier way 
of determining the membership functions.
One the main takeaways from this paper is that the available empirical data for 
evacuation speed estimation is very small, sparse and noisy. Realistic experiments are 
very expensive in this domain and they necessarily abstract from many details, because 
a perfectly realistic reconstruction would endanger human persons in a degree similar 
to a real emergency.
These conclusions highlight the crucial need for powerful, high-fidelity simulation 
tools, allowing for the creation of highly-detailed and physically faithful models. Such 
simulation tools enable us to generate richer data – although the models themselves 
need to be verified first. Such simulation still requires a lot of time and computational 
resources. Our next goal, therefore, is to produce a larger amount of data from various 
configurations of a model and then use this data to create a simpler, faster meta-model 
for evacuation speed estimation, e.g. using the approach present in this paper, or 
a similar approach.

This contribution/publication is the result of the project implementation: Centre of 
excellence for systems and services of intelligent transport, ITMS 26220120050 
supported by the Research \& Development Operational Programme funded by the 
ERDF.
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Uczenie się rozmytego modelu do oszacowania 
szybkości ewakuacji przy użyciu rozmytych 
drzew decyzyjnych i metod ewolucyjnych

Streszczenie

Artykuł zajmuje się oszacowaniem czasu ewakuacji przy użyciu rozmytego meta-modelu 
wyprowadzonego z danych używając kombinacji rozmytych drzew decyzyjnych (aby konstruować 
podstawę reguły) oraz ewolucyjnego dostrajania (aby zoptymalizować funkcje przynależności). 
Wykorzystuje on dane rzeczywiste - zgromadzone z istniejącej literatury. Artykuł omawia najpierw 
pewne podstawowe fakty dotyczące ewakuacji tuneli drogowych i jej symulacji. Następnie przechodzi 
do omówienia ewolucyjnego dostrajania systemów rozmytych i rozmytych drzew decyzyjnych oraz 
opisuje proponowany sposób podejścia. Pokazuje, że to podejście poprawia wcześniejsze wyniki 
osiągnięte przy użyciu podejścia czysto ewolucyjnego.

Słowa kluczowe

systemy Evo rozmyte, rozmyte drzewa decyzyjne, symulacja ewakuacji


