PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and analysis of cerebrospinal fluid flow in the human brain – is cerebrospinal fluid an effective protective mechanism during high-impact loading?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates cerebrospinal fluid (CSF) flow dynamics to enhance the understanding of brain biomechanics and the importance of CSF during high-impact loading. Methods: Comparative analyses were conducted using the benchmark model with smoothed particle hydrodynamics (SPH), without cerebrospinal fluid, and with an additional element – the arachnoid trabeculae – which functions as rigid connections between the brain and skull. The numerical modelling of cerebrospinal fluid and the derived conclusions were validated and calibrated through experiments performed in the additional research phase. Results: The research emphasises the challenges of accurately modelling cerebrospinal fluid dynamics and brain biomechanics. The results were unexpected in several ways. Initially, a rigid cortex-skull connection was anticipated to yield results nearly identical to those observed in Hardy’s experiments. Even more surprising were the results for the models with cerebrospinal fluid modelled as smoothed particle hydrodynamics and the model without cerebrospinal fluid, which showed almost identical results in comparison to each other. The novel physical experiment with a gelatine insert subjected to controlled loading and numerical model simulations revealed that SPH models exhibited closely resembling fluid displacement, while tetrahedral elements imposed unrealistic rigidity. Conclusions: The simulations and the novel experiment provide key insights into cerebrospinal fluid dynamics during traumatic brain injury. The findings suggest that the protective function of CSF might be less pronounced under extreme conditions than previously assumed. The smoothed particle hydrodynamics method demonstrates clear advantages over tetrahedral finite element approaches by offering superior brain-in-skull flexibility and avoiding the excessive rigidity inherent to traditional finite element models. We concluded that mechanism of brain protection by CSF is performed rather by hydraulic damping than the brain immersion in vast volume of CSF.
Rocznik
Strony
144--155
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland.
autor
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland.
  • Autoliv Poland Sp. z o.o., Jelcz-Laskowice, Poland.
  • Engineering Office Lystis, Poland.
  • Faculty of Medicine, Wrocław University of Science and Technology, Wrocław, Poland.
Bibliografia
  • [1] AL-BSHARAT A.S., HARDY W.N., YANG K.H., KHALIL T.B., TASHMAN S., KING A.I., Brain/Skull Relative Displacement Magnitude Due to Blunt Head Impact: New Experimental Data and Model, 43rd Stapp Car Crash Conference Proceedings, 1999-P-350, 1999, DOI: 10.4271/99SC22.
  • [2] BARBOSA A., FERNANDES F.A.O., ALVES DE SOUSA R.J., PTAK M., WILHELM J., Computational Modeling of Skull Bone Structures and Simulation of Skull Fractures Using the YEAHM Head Model, Biology (Basel), 2020, 9 (9), 267, DOI: 10.3390/biology9090267.
  • [3] BLENNOW K., BRODY D.L., KOCHANEK P.M. et al., Traumatic brain injuries, Nat. Rev. Dis. Primers, 2016, 2 (1), 16084, DOI: 10.1038/nrdp.2016.84.
  • [4] CAI Z., XIA Y., BAO Z., MAO H., Creating a human head finite element model using a multi-block approach for predicting skull response and brain pressure, Comput. Methods Biomech. Biomed. Engin., 2019, 22 (2), 169–179, DOI: 10.1080/10255842.2018.1541983.
  • [5] CARDILLO G., Fluid Dynamic Modeling of Biological Fluids: From the Cerebrospinal Fluid to Blood Thrombosis, Politecnico di Torino, 2020, https://www.researchgate.net/publication/349665311
  • [6] CARMO G.P., DYMEK M., PTAK M., ALVES-DE-SOUSA R.J., FERNANDES F.A.O., Development, validation and a case study: The female finite element head model (FeFEHM), Comput. Methods Programs Biomed., 2023, 231, 107430, DOI: 10.1016/j.cmpb.2023.107430.
  • [7] CZARNIAK N., KAMIŃSKA J., MATOWICKA-KARNA J., KOPER-LENKIEWICZ O., Cerebrospinal Fluid–Basic Concepts Review, Biomedicines, 2023, 11 (5),1461, DOI: 10.3390/biomedicines11051461.
  • [8] DANEMAN R., PRAT A., The Blood–Brain Barrier, Cold Spring Harb. Perspect. Biol., 2015, 7 (1), a020412, DOI: 10.1101/cshperspect.a020412.
  • [9] DONATELLI D., ROMAGNOLI L., Nonreflecting Boundary Conditions for a CSF Model of Fourth Ventricle: Spinal SAS Dynamics, Bull. Math. Biol., 2020, 82 (6), 77, DOI: 10.1007/s11538-020-00749-4.
  • [10] DUCKWORTH H., SHARP D.J., GHAJARI M., Smoothed particle hydrodynamic modelling of the cerebrospinal fluid for brain biomechanics: Accuracy and stability, Int. J. Numer Method. Biomed. Eng., 2021, 37 (4), DOI: 10.1002/cnm.3440.
  • [11] FERNANDES F.A.O., TCHEPEL D., ALVES DE SOUSA R.J., PTAK M., Development and validation of a new finite element human head model, Eng. Comput. (Swansea), 2018, 35 (1), 477–496, DOI: 10.1108/EC-09-2016-0321.
  • [12] FILIS A.K., AGHAYEV K., VRIONIS F.D., Cerebrospinal Fluid and Hydrocephalus: Physiology, Diagnosis, and Treatment, Cancer Control, 2017, 24 (1), 6–8, DOI: 10.1177/107327481702400102.
  • [13] GOMES M.S., CARMO G.P., PTAK M., FERNANDES F.A.O., ALVES DE SOUSA R.J., Accuracy and efficiency of finite element head models: The role of finite element formulation and material laws, Int. J. Numer Method. Biomed. Eng., 2024, 40 (9), DOI: 10.1002/cnm.3851.
  • [14] HARDY W.N., MASON M.J., FOSTER C.D. et al., A study of the response of the human cadaver head to impact, Stapp Car Crash J., 2007, 51, 17–80, DOI: 10.4271/2007-22-0002.
  • [15] JAMES S.L., THEADOM A., ELLENBOGEN R.G. et al., Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016, Lancet Neurol., 2019, 18 (1), 56–87, DOI: 10.1016/S1474-4422(18)30415-0.
  • [16] JAMROZIAK K., BAJKOWSKI M., BOCIAN M. et al., Ballistic Head Protection in the Light of Injury Criteria in the Case of the Wz.93 Combat Helmet, Applied Sciences, 2019, 9 (13), 2702,DOI: 10.3390/app9132702.
  • [17] JI S., GHADYANI H., BOLANDER R.P. et al., Parametric Comparisons of Intracranial Mechanical Responses from Three Validated Finite Element Models of the Human Head, Ann. Biomed. Eng., 2014, 42 (1), 11–24, DOI: 10.1007/s10439-013-0907-2.
  • [18] JIN J.X., ZHANG J.Y., SONG X.W., HU H., SUN X.Y., GAO Z.H., Effect of cerebrospinal fluid modeled with different material properties on a human finite element head model, J. Mech. Med. Biol., 2015, 15 (03), 1550027, DOI: 10.1142/S021951941550027X.
  • [19] KOBIELARZ M., SZOTEK S., GŁOWACKI M., DAWIDOWICZ J., PEZOWICZ C., Qualitative and quantitative assessment of collagen and elastin in annulus fibrosus of the physiologic and scoliotic intervertebral discs, J. Mech. Behav. Biomed. Mater, 2016, 62, 45–56, DOI: 10.1016/j.jmbbm.2016.04.033.
  • [20] LYU D., ZHOU R., LIN C.H., Development and Validation of a New Anisotropic Visco-Hyperelastic Human Head Finite Element Model Capable of Predicting Multiple Brain Injuries, Front. Bioeng. Biotechnol., 2022, 10, DOI: 10.3389/fbioe.2022.831595.
  • [21] MACMANUS D.B., MENICHETTI A., DEPREITERE B., FAMAEY N., VANDER SLOTEN J., GILCHRIST M., Towards animal surrogates for characterising large strain dynamic mechanical properties of human brain tissue, Brain Multiphys., 2020, 1, 100018, DOI: 10.1016/J.BRAIN.2020.100018.
  • [22] MADHUKAR A., CHEN Y., OSTOJA-STARZEWSKI M., Effect of cerebrospinal fluid modeling on spherically convergent shear waves during blunt head trauma, Int. J. Numer. Method. Biomed. Eng., 2017, 33 (12), DOI: 10.1002/cnm.2881.
  • [23] MAO H., ZHANG L., JIANG B., Development of a Finite Element Human Head Model Partially Validated With Thirty Five Experimental Cases, J. Biomech. Eng., 2013, 135 (11), DOI: 10.1115/1.4025101.
  • [24] OZGA J.E., POVROZNIK J.M., ENGLER-CHIURAZZI E.B., HAAR C.V., Executive (dys)function after traumatic brain injury: special considerations for behavioral pharmacology, Behavioural Pharmacology, 2018, 29 (7), 617–637, DOI: 10.1097/FBP.0000000000000430.
  • [25] PTAK M., DYMEK M., SAWICKI M. et al., Experimental and computational approach to human brain modelling – aHEAD, Archives of Civil and Mechanical Engineering, 2023, 23 (3), 218, DOI: 10.1007/s43452-023-00758-9.
  • [26] PTAK M., DYMEK M., SAWICKI M. et al., Experimental and computational approach to human brain modelling – aHEAD, Archives of Civil and Mechanical Engineering, 2023, 23 (3), 218, DOI: 10.1007/s43452-023-00758-9.
  • [27] PTAK M., DYMEK M., WDOWICZ D., SZUMIEJKO A., KWIATKOWSKI A., Energy-absorbing limitations of hard hat safety helmets in mitigating trauma from falling objects, Archives of Civil and Mechanical Engineering, 2024, 24 (4), 199, DOI: 10.1007/s43452-024-01012-6.
  • [28] RATAJCZAK M., PTAK M., CHYBOWSKI L., GAWDZIŃSKA K., BEDZIŃSKI R., Material and structural modeling aspects of brain tissue deformation under dynamic loads, Materials, 2019, 12 (2), DOI: 10.3390/ma12020271.
  • [29] RYCMAN A., MCLACHLIN S., CRONIN D.S., Comparison of numerical methods for cerebrospinal fluid representation and fluid–structure interaction during transverse impact of a finite element spinal cord model, Int. J. Numer. Method. Biomed. Eng., 2022, 38 (3), DOI: 10.1002/cnm.3570.
  • [30] SALGADO A., WDOWICZ D., FERNANDES F., PTAK M., ALVES DE SOUSA R., Assessing head injury risks in electric scooter accidents: A multi-body simulation study with insights into sex differences, Leg. Med., 2024, 71 (August), 102526, DOI: 10.1016/j.legalmed.2024.102526.
  • [31] SYBILSKI K., MAŁACHOWSKI J., Sensitivity study on seat belt system key factors in terms of disabled driver behavior during frontal crash, Acta Bioeng. Biomech., 2019, 21 (4), DOI:10.5277/ABB-01421-2019-02.
  • [32] TOMA M., DEHESA-BAEZA A., CHAN-AKALEY R., NGUYEN P.D.H., ZWIBEL H., Cerebrospinal Fluid Interaction with Cerebral Cortex during Pediatric Abusive Head Trauma, Journal of Pediatric Neurology, 2020, 18 (05), 223–230, DOI: 10.1055/s-0040-1708495.
  • [33] TOMA M., NGUYEN P.D.H., Fluid–structure interaction analysis of cerebrospinal fluid with a comprehensive head model subject to a rapid acceleration and deceleration, Brain Inj., 2018, 32 (12), 1576–1584, DOI: 10.1080/02699052.2018.1502470.
  • [34] TOMASZEWSKI M., KUCEWICZ M., RZEPLIŃSKI R., MAŁACHOWSKI J., CISZEK B., Numerical aspects of modelling flow through the cerebral artery system with multiple small perforators, Biocybern. Biomed. Eng., 2024, 44 (2), 341–357,DOI: 10.1016/j.bbe.2024.04.002.
  • [35] TSE K.M., TAN L. BIN, LEE H.P., The Skull and Brain, Military Injury Biomechanics, CRC Press, 2017, 175–220, DOI:10.4324/9781315151731-10.
  • [36] TUMANI H., HUSS A., BACHHUBER F., The cerebrospinal fluid and barriers – anatomic and physiologic considerations, Handb. Clin. Neurol., 2017, 146, 21–32, DOI: 10.1016/B978-0-12-804279-3.00002-2.
  • [37] WERNER C., ENGELHARD K., Pathophysiology of traumatic brain injury, Br. J. Anaesth., 2007, 99 (1), 4–9, DOI:10.1093/bja/aem131.
  • [38] WILHELM J., PTAK M., FERNANDES F.A.O. et al., Injury Biomechanics of a Child’s Head: Problems, Challenges and Possibilities with a New aHEAD Finite Element Model, Applied Sciences, 2020, 10 (13), 4467, DOI: 10.3390/app10134467.
  • [39] WILLINGER R., KANG H.S., DIAW B., Three-Dimensional Human Head Finite-Element Model Validation Against Two Experimental Impacts, Ann. Biomed. Eng., 1999, 27 (3), 403–410,DOI: 10.1114/1.165.
  • [40] YAN W., PANGESTU O.D., A modified human head model for the study of impact head injury, Comput. Methods Biomech. Biomed. Engin., 2011, 14 (12), 1049–1057, DOI: 10.1080/10255842.2010.506435.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fd9c482-c781-46f5-a3de-8142b9820af1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.