Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Ni-Cr-Mo alloys are used as the alternative for the cobalt alloys in the manufacture of metal prosthetic elements, i.e. crowns, bridges and frame prostheses. The article attempts at a materials science characterization of the nickel-based alloy of the commercial name Argeloy N.P Be-Free by Argen. Within the study, examinations were made on the commercial alloy as well as the alloy which was remelted and cast by the los mould (lost wax) method. Observations of the microstructure were performed with the use of optical and electron scanning microscopy. Also, X-ray structural tests were conducted as well as corrosion resistance tests in an artificial saliva solution (pH = 6,7). It was demonstrated that the examined Ni-22Cr-9Mo alloy characterized in a dendritic structure typical of the cast materials. The X-ray qualitative phase analysis revealed the phase γ'(Ni) in both examined materials, as well as the presence of Cr23C6 type carbides and Nb2C, Ta2C (commercial alloy) and NbC, Ta4C0,04 (cast alloy) phases. The effect of the alloy’s remelting and the morphology of the passive layer on the corrosion resistance of the Ni-Cr-Mo alloy was examined. The results of the electrochemical tests show that the process of re-casting only slightly affects the corrosion resistance and the microstructure of the considered alloy. The roles of recasting process and the passive film homogeneity on the corrosion resistance of Ni-Cr-Mo dental alloy were reviewed. The results the electrochemical study show that the dependence of corrosion resistance on the microstructure associated with the recasting process is marginal.
Wydawca
Czasopismo
Rocznik
Tom
Strony
411--418
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Mickiewicza Av. 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta St. 23, 30-059 Cracow, Poland
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta St. 23, 30-059 Cracow, Poland
Bibliografia
- [1] ISO 6871-2:1994 Dental base metal casting alloys - Part 2: Nickel- based alloys (1994).
- [2] J. Geis-Gerstorfer, K. Passler, Dental Materials 9, 3, 177-81 (1993).
- [3] L. Braga Alkmin, A.A. Araújo Pinto da Silva, C.A. Nunes, C. dos Santos, G.C. Coelho, Materials Research 17, 3 (2014).
- [4] J. Bauer, J.F. Costa, C.N. Carvalho, RHM. Grande, AD. Louguercio, A. Reis, Journal of Prosthodontic Research 56, 264-71, (2012).
- [5] H.H. Huang, Journal of Biomedical Materials Research 60, 3, 458-465 (2002).
- [6] A. Eftekhari, Applied Surface Science 220, 1-4, 343-348, (2003).
- [7] J. Augustyn-Pieniążek, A. Łukaszczyk, R. Zapała, Archives of Metallurgy and Materials 58, 4, 1281-1285 (2013).
- [8] Q. Chen, G.A. Thouas, Materials Science and Engineering 87, 1-57 (2015).
- [9] K. Radomska, D. Klimecka-Tatar, K. Jagielska-Wiaderek, Corrosion Protection 57, 7, 262-268 (2014).
- [10] D. Klimecka-Tatar, Metal 2-6 (2015).
- [11] H-Y. Lin, B. Bowers, J.T. Wolan, Z. Cai, J.D. Bumgardner, Dental Materials 24, 378-385 (2008).
- [12] M.D. Roach, J.T. Wolan, D.E. Parsell, J.D. Bumgardner, Journal of Prosthetic Dentistry 84, 623-634 (2000).
- [13] C.M. Wylie, R.M. Shelton, G.J. Fleming, A. Davenport, Dental Materials 23, 714-723 (2007).
- [14] A. Fossati, F. Borgiolo, E. Galvanetto, T. Bacci, Corrosion Science 46, 917-927 (2004).
- [15] L. Reclaru, R.E. Unger, C.J. Kirkpatrick, C. Susz, P.-Y. Eschler, M.-H. Zuercher, I. Antoniac, H. Lüthy, Ni-Cr based dental alloys; Ni release corrosion and biological evaluation, Materials Science and Engineering C 32, 1452-1460 (2012).
- [16] C. Mulders, M. Darwish, R. Holze, Journal of Oral Rehabilitation 23, 825-831 (1996).
- [17] S.J. Kim, Y.M. Ko, H.C. Choe, Advanced Materials Research 15-17, 164-168 (2007).
- [18] J. Loch, A. Łukaszczyk, J. Augustyn-Pieniążek, H. Krawiec, Solid State Phenomena 227 (2015).
- [19] www.argen.com
- [20] ISO 10271:2001 Dental metallic materials - Corrosion test methods (2001).
- [21] M.J. Perricone, J.N. Dupont, Metallurgical and Materials Transaction A 37A, 1267-1280 (2006).
- [22] A. Korneva I. Orlicka, K. Sztwiertnia, G. Zaikov, Chemistry & Chemical Technology 8, 1, 103-106 (2014).
- [23] E. Juzeliunas, K. Leinartas, J., Solid State Electrochem 6, 302-310 (2002).
- [24] M. Pourbaix, Lectures electrochemical corrosion, PWN, Warszawa, (1978).
- [25] Ch.M. Wylie, R.M. Shelton, G.J.P. Fleming, A.J. Davenport, Dental Materials 22, 714-723 (2007).
- [26] J.W. McLean, The science and art of dental ceramics 1, Quintessence Publishing, Chicago, (1979).
- [27] H.H. Huang, M.C. Lin, T.H. Lee, H.W. Yang, F.L. Chen, S.C. Wu, C.C. Hsu, Journal Oral Rehabilitation 32, 206-212, (2005).
Uwagi
EN
The work has been implemented within the framework of statutory research of AGH University of Science and Technology, contract No 11.11.110.299 AGH
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fd7b394-1678-4bbd-805f-a717e9a18ba7