PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chrome(VI) ion biosorption modelling in a fixed bed column on Dioscorea rotundata hull

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work aimed to evaluate the yam peel in a bed column packaged as a chromium(VI) ion adsorbent in an aqueous solution. Yam peel was used as adsorbent, prior washing, drying, size reduction, and selection. The experimental work consisted in determining the effect of bed depth, particle size, and temperature, keeping inlet flow = 0.75 cm3∙s-1, pH = 2 and initial concentration of 100 mg∙dm-3. The Adsorption Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDS) analysis on yam (Dioscorea rotundata) peel showed a heterogeneous, porous structure, with functional groups characteristic in lignocellulosic materials. It was analysed regarding the influence of temperature, bed height, and adsorbent particle size on the removal efficiency; it was found that the decrease of particle size and the increase of the bed height favour the elimination of the metallic ion, with removal rates between 92.4 and 98.3%. The bed maximum adsorption capacity was 61.75 mg∙g-1, and break time of 360 min. The break curve’s adjustment to the Thomas, Yoon-Nelson, Dose-Response and Adams-Bohart models was evaluated, concluding that the Yoon-Nelson and Dose-Response models best described the behaviour of the break curve with a coefficient of determination (R2) of 0.95 and 0.96, respectively. The results show that the bio-adsorbent studied can be used to eliminate Cr(VI) in a continuous system.
Wydawca
Rocznik
Tom
Strony
202--209
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
  • Universidad de Cartagena, Department of Chemical Engineering, Cartagena de Indias, Colombia
  • Universidad de Cartagena, Department of Chemical Engineering, Cartagena de Indias, Colombia
  • Universidad de Cartagena, Department of Food Engineering, Av. del Consulado # 30 St., No. 48 152 Cartagena, Cartagena de Indias, Bolívar Cartagena de Indias, Colombia
  • Universidad de Cartagena, Department of Chemical Engineering, Cartagena de Indias, Colombia
  • Universidad de Cartagena, Department of Chemical Engineering, Cartagena de Indias, Colombia
Bibliografia
  • ABDOLALI A., NGO H.H., GUO W., ZHOU J.L., ZHANG J., LIANG S., CHANG S. W., NGUYEN D.D., LIU Y. 2017. Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresource Technology. Vol. 229 p. 78–87. DOI 10.1016/j.biortech.2017.01.016.
  • ACHMAD R.T., BUDIAWAN, AUERKARI E.I. 2017. Effects of chromium on human body. Annual Research and Review in Biology. Vol. 13(2) p. 1–8. DOI 10.9734/ARRB/2017/33462.
  • AKPOMIE K.G., ELUKE L.O., AJIWE V.I., ONYEMEZIRI A.C. 2018. Attenuation kinetics and desorption performance of Artocarpus altilis seed husk for Co(II), Pb(II) and Zn(II) ions. Iranian Journal of Chemistry and Chemical Engineering. Vol. 37(3) p. 171–186.
  • ARANDA-GARCÍA E., CRISTIANI-URBINA E. 2020. Hexavalent chromium removal and total chromium biosorption from aqueous solution by Quercus crassipes acorn shell in a continuous up-flow fixed-bed column: Influencing parameters, kinetics, and mechanism. PLOS ONE. Vol. 15(1), e0227653. DOI 10.1371/journal.pone.0227953.
  • ARIM A.L., NEVES K., QUINA M.J., GANDO-FERREIRA L.G. 2018. Experimental and mathematical modelling of Cr(III) sorption in fixed-bed column using modified pine bark. Journal of Cleaner Production. Vol. 183 p. 272–281. DOI 10.1016/j.jcle-pro.2018.02.094.
  • BHANVASE B.A., UGWEKAR R.P., MARKAR R.B. 2017. Novel water treatment and separation methods: Simulation of chemical processes. Waretown. Apple Academic Press Inc. ISBN 9781774636503 pp. 356.
  • BHARATHI K.S., RAMESH S.K.P.T. 2013. Fixed-bed column studies on biosorption of crystal violet from aqueous solution by Citrullus lanatus rind and Cyperus rotundus. Applied Water Science. Vol. 3 p. 673–687. DOI 10.1007/s13201-013-0103-4.
  • BIBAJ E., LYSIGAKI K., NOLAN J.W., SEYEDSALEHI M., DELIYANNI E.A., MITROPOULOS A.C., KYZAS G.Z. 2019. Activated carbons from banana peels for the removal of nickel ions. International Journal of Environmental Science and Technology. Vol. 16(2) p. 667–680. DOI 10.1007/s13762-018-1676-0.
  • BLANES P.S., BORDONI M.E., GONZÁLEZ J.C., GARCÍA S.I., ATRIA A.M., SALAL.F., BELLÚ S.E. 2016. Application of soy hull biomass in removal of Cr(VI) from contaminated waters. kinetic, thermodynamic and continuous sorption studies. Journal of Environmental Chemical Engineering. Vol. 4(1) p. 516–526. DOI 10.1016/j.jece.2015.12.008.
  • CHEN S., YUE Q., GAO B., LI Q., XU X., FU K. 2012. Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: A fixed-bed column study. Bioresource Technology. Vol. 113 p. 114–120. DOI 10.1016/j.biortech.2011.11.110.
  • CHERDCHOO W., NITHETTHAM S., CHAROENPANICH J. 2019. Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea. Chemosphere. Vol. 221 p. 758–767. DOI 10.1016/j.chemosphere.2019.01.100.
  • CHINYELU I.E., ODEBEATU C.C., OBUMSELU O.F., ILOAMAEKE I.M.J., KAMMEJE T.J. 2018. Isotherm studies of adsorption of Cr(VI) ions onto coconut husk. International Journal of Biochemistry, Biophysics & Molecular Biology. Vol. 3(2) p. 38–44. DOI 10.11648/j.ijbbmb.20180302.13.
  • CORRAL-ESCÁRCEGA M.C., RUIZ-GUTIÉRREZ M.G., QUINTERO-RAMOS A., MELÉNDEZ-PIZARRO C.O., LARDIZABAL-GUTIÉRREZ D., CAMPOS-VENEGAS K. 2017. Use of biomass-derived from pecan nut husks (Carya illinoinensis) for chromium removal from aqueous solutions. Column modeling and adsorption kinetics studies. Revista Mexicana de Ingeniera Quimica. Vol. 16(3) p. 939–953.
  • DEMIREL M., KAYAN B. 2012. Application of response surface methodology and central composite design for the optimization of textile dye degradation by wet air oxidation. International Journal of Industrial Chemistry. Vol. 3(1) p. 1–10. DOI 10.1186/2228-5547-3-24.
  • DENG Y., HUANG S., DONG C., MENG Z., WANG X. 2020. Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars. Bioresource Technology. Vol. 303, 122853. DOI 10.1016/j.biortech.2020.122853.
  • ELABBAS S., OUAZZANI N., MANDI L., BERREKHIS F., PERDICAKIS M., PONTVIANNE S., PONS M.N., LAPICQUE F., LECLERC J.P. 2016. Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode. Journal of Hazardous Materials. Vol. 319 p. 69–77. DOI 10.1016/j.jhazmat.2015.12.067.
  • HAROON H., ASHFAQ T., HUSSAIN GARDAZI S.M., SHERAZI T.A., ALI M., RASHID N., BILAL M. 2016. Equilibrium kinetic and thermo-dynamic studies of Cr(VI) adsorption onto a novel adsorbent of Eucalyptus camaldulensis waste: Batch and column reactors. Korean Journal of Chemical Engineering. Vol. 33(10) p. 2898–2907. DOI 10.1007/s11814-016-0160-0.
  • JAFARI S.A., JAMALI A. 2016. Continuous cadmium removal from aqueous solutions by seaweed in a packed-bed column under consecutive sorption-desorption cycles. Korean Journal of Chemical Engineering. Vol. 33(4) p. 1296–1304. DOI 10.1007/s11814-015-0261-1.
  • KUPPUSAMY S., PALANISAMI T., LEE Y.B., NAIDU R. 2016. Oak (Quercus robur) acorn peel as a low-cost adsorbent for hexavalent chromium removal from aquatic ecosystems and industrial effluents. Water, Air, & Soil Pollution. Vol. 227, 62. DOI 10.1007/s11270-016-2760-z.
  • MALKOC E., YASAR N. 2006. Fixed bed studies for the sorption of chromium(VI) onto tea factory waste. Chemical Engineering Science. Vol. 61(13) p. 4363–4372. DOI 10.1016/j.ces.2006.02.005.
  • MALKOC E., NUHOGLU Y., ABALI Y. 2006. Cr(VI) adsorption by waste acorn of Quercus ithaburensis in fixed beds: Prediction of breakthrough curves. Chemical Engineering Journal. Vol. 119(1) p. 61–68. DOI 10.1016/j.cej.2006.01.019.
  • MARTÍN-LARA M.Á., TRUJILLO MIRANDA M.C., RONDA GÁLVEZ A., PÉREZ MUÑOZ A., CALERO DE HOCES M. 2017. Valorization of olive stone as adsorbent of chromium(VI): Comparison between laboratory- and pilot-scale fixed-bed columns. International Journal of Environmental Science and Technology. Vol. 14(12) p. 2661–2674. DOI 10.1007/s13762-017-1345-8.
  • MEDELLIN-CASTILLO N., HERNÁNDEZ-RAMÍREZ M.G., SALAZAR-R ÁBAGO J.J., LABRADA-DELGADO G.J., ARAGÓN-PIÑA A. 2017. Bioadsorción de plomo (II) presente en solución acuosa sobre residuos de fibras naturales procedentes de la industria ixtlera (Agave lechuguilla Torr. y Yucca carnerosana (Trel.) McKelvey) [Biosorption of lead (II) in aqueous solution onto residues of natural fibers from the ixtlera industry (Agave lechuguilla Torr. and Yucca carnerosana (Trel.) McKelvey)]. Revista Internacional de Contaminación Ambiental. Vol. 33(2) p. 269–280. DOI 10.20937/RICA.2017.33.02.08.
  • MISHRA A., TRIPATHI B.D., RAI A.K. 2016. Packed-bed column biosorption of chromium(VI) and nickel(II) onto Fenton modified Hydrilla verticillata dried biomass. Ecotoxicology and Environmental Safety. Vol. 132 p. 420–428. DOI 10.1016/j.ecoenv.2016.06.026.
  • PARLAYICI Ş., PEHLIVAN E. 2019. Comparative study of Cr(VI) removal by bio-waste adsorbents: Equilibrium, kinetics, and thermodynamic. Journal of Analytical Science and Technology. Vol. 10(1), 15. DOI 10.1186/s40543-019-0175-3.
  • PENG S.H., WANG R., YANG L.Z., HE L., HE X., LIU X. 2018. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Ecotoxicology and Environmental Safety. Vol. 165 p. 61–69. DOI 10.1016/j.ecoenv.2018.08.084.
  • RANASINGHE S.H., NAVARATNE A.N., PRIYANTHA N. 2018. Enhancement of adsorption characteristics of Cr(III) and Ni(II) by surface modification of jackfruit peel biosorbent. Journal of Environmental Chemical Engineering. Vol. 6(5) p. 5670–5682. DOI 10.1016/j.jece.2018.08.058.
  • RANGABHASHIYAM S., GIRI NANDAGOPAL M.S., NAKKEERAN E., SELVARAJU N. 2016. Adsorption of hexavalent chromium from synthetic and electroplating effluent on chemically modified Swietenia mahagoni shell in a packed bed column. Environmental Monitoring and Assessment. Vol. 188(7) p. 1–13. DOI 10.1007/s10661-016-5415-z.
  • RODRIGUES E., ALMEIDA O., BRASIL H., MORAES D., DOS REIS M.A.L. 2019. Applied clay science adsorption of chromium (VI) on hydro-talcite-hydroxyapatite material doped with carbon nanotubes: Equilibrium, kinetic and thermodynamic study. Applied Clay Science. Vol. 172 p. 57–64. DOI 10.1016/j.clay.2019.02.018.
  • RONDA A., MARTÍN-LARA M.A., ALMENDROS A.I., PÉREZ A., BLÁZQUEZ G. 2015. Comparison of two models for the biosorption of Pb(II) using untreated and chemically treated olive stone: Experimental design methodology and Adaptive Neural Fuzzy Inference System (ANFIS). Journal of the Taiwan Institute of Chemical Engineers. Vol. 54 p. 45–56. DOI 10.1016/j.jtice.2015.03.004.
  • RUIZ-PATERNINA E.B., VILLABONA-ORTIZ Á., TEJADA-TOVAR C., ORTEGA-TORO R. 2019. Estudio termodinámico de la remoción de níquel y cromo en solución acuosa usando adsorbentes de origen agroindustrial [Thermodynamic study of the removal of nickel and chromium in aqueous solution using adsorbents of agro-industrial origin]. Informacion Tecnologica. Vol. 30(6) p. 3–10. DOI 10.4067/S0718-07642019000600003.
  • SAHU O., SINGH N. 2019. Significance of bioadsorption process on textile industry wastewater. In: The impact and prospects of green chemistry for textile technology. Eds. Shahid-ul-Islam, B.S. Butola. The Textile Institute Book Series. Vol. 13 p. 367–416. DOI 10.1016/B978-0-08-102491-1.00013-7.
  • SRIVASTAVA S., AGRAWAL S.B., MONDAL M.K. 2019. Fixed bed column adsorption of Cr(VI) from aqueous solution using nanosorbents derived from magnetite impregnated Phaseolus vulgaris Husk. Environmental Progress and Sustainable Energy. Vol. 38(s1) p. S68–S76. DOI 10.1002/ep.12918.
  • SUKUMAR C., JANAKI V., VIJAYARAGHAVAN K., KAMALA-KANNAN S., SHANTHI K. 2017. Removal of Cr(VI) using co-immobilized activated carbon and Bacillus subtilis: Fixed-bed column study. Clean Technologies and Environmental Policy. Vol. 19(1) p. 251–258. DOI 10.1007/s10098-016-1203-2.
  • VERA L.M., BERMEJO D., UGUÑA M.F., GARCIA N., FLORES M., GONZÁLEZ E. 2019. Fixed bed column modeling of lead(II) and cadmium(II) ions biosorption on sugarcane bagasse. Environmental Engineering Research. Vol. 24(1) p. 31–37. DOI 10.4491/eer.2018.042.
  • VILLABONA-ORTIZ Á., TEJADA-TOVAR C., RUIZ-PATERNINA E., FRÍAS-GONZÁLEZ J.D., BLANCO-GARCÍA G.D. 2020. Optimization of the effect of temperature and bed height on Cr (VI) bioadsorption in continuous system. Revista Facultad de Ingeniería. Vol. 29(54), e10477. DOI 10.19053/01211129.v29.n54.2020.10477.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fd2cc01-f0d4-4044-a1c8-e2f353eae42d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.