Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A new mechanism, an elastically coupled tri-rotor system, is proposed to implement synchronization. It is composed of a rigid body, three induction motors, coupling unit and springs. According to the Lagrange equation, the model of the system is established. The average method of small parameters is applied to study the synchronization characteristics of the system, therefore, the balance equation and stability criterion of the system can be obtained. Obviously, many parameters affect the synchronous state of the rotors, especially the spring stiffness, the stiffness of the coupling unit and the installation location of the system. Finally, computer simulations are used to verify the correctness of theoretical analysis.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
227--240
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
- School of Mechanical Engineering, Southwest Petroleum University, Chengdu, China
autor
- School of Mechanical Engineering, Southwest Petroleum University, Chengdu, China
autor
- School of Mechanical Engineering, Southwest Petroleum University, Chengdu, China
autor
- School of Mechanical Engineering, Southwest Petroleum University, Chengdu, China
Bibliografia
- 1. Balthazar J.M., 2004, Short comments on self-synchronization of two non-ideal sources supported by a flexible portal frame structure, Journal of Vibration and Control, 10, 1739-1748
- 2. Balthazar J.M., Felix J.L.P., Brasil R.M., 2005, Some comments on the numerical simulation of self-synchronization of four non-ideal exciters, Applied Mathematics and Computation, 164, 615-625
- 3. Blekhman I.I., 1988, Synchronization in Science and Technology, ASME Press
- 4. Blekhman I.I., Fradkov A.L., Nijmeijer H., Pogromsky A.Y., 1997, On self- -synchronization and controlled synchronization, Proceedings of European Control Conference
- 5. Blekhman I.I., Fradkov A.L., Tomchina O.P., Bogdanov D.E., 2002, Self-synchronization and controlled synchronization: general definition and example design, Mathematics and Computers in Simulation, 58, 367-384
- 6. Fang P., Hou Y., Nan Y., Yu L., 2015, Study of synchronization for a rotor-pendulum system with Poincare method, Journal of Vibroengineering, 17, 2681-2695
- 7. Fradkov A.L., Andrievsky B., 2007, Synchronization and phase relations in the motion of two-pendulum system, International Journal of Non-Linear Mechanics, 42, 895-901
- 8. Hou J., 2007, The synchronous theory of three motor self-synchronism exciting elliptical motion shaker, Journl of Southwest Petroleum University, 29, 168-172
- 9. Huygens C., 1673, Horologium Oscilatorium, Paris, Frence
- 10. Jovanovic V., Koshkin S., 2012, Synchronization of Huygens’ clocks and the Poincar´e method, Journal of Sound and Vibration, 331, 2887-2900
- 11. Koluda P., Perlikowski P., Czolczynski K., Kapitaniak T., 2014, Synchronization con- figurations of two coupled double pendula, Communications in Nonlinear Science and Numerical Simulation, 19, 977-990
- 12. Koluda P., Perlikowski P., Czolczynski K., Kapitaniak T., 2014, Synchronization of two self-excited double pendula, The European Physical Journal Special Topics, 223, 613-629
- 13. Kumon M., Washizaki R., Sato J., Kohzawa R., Mizumoto I., Iwai Z., 2002, Controlled synchronization of two 1-DOF coupled oscillators, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 15, 1
- 14. Rui D., 2014, Anti-phase synchronization and ergodicity in arrays of oscillators coupled by an elastic force, European Physical Journal Special Topics, 223, 665-676
- 15. Zhang X.L., Wen B.C., Zhao C.Y., 2012, Synchronization of three homodromy coupled exciters in a non-resonant vibrating system of plane motion, Acta Mechanica Sinica, 28, 1424-1435
- 16. Zhang X.L., Wen B.C., Zhao C.Y., 2013, Synchronization of three non-identical coupled exciters with the same rotating directions in a far-resonant vibrating system, Journal of Sound and Vibration, 332, 2300-2317
- 17. Zhao C.Y., Zhang Y.M., Wen B.C., 2010, Synchronisation and general dynamic symmetry of a vibrating system with two exciters rotating in opposite directions, Acta Physica Sinica, 19, 14-20
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fccdadc-adfa-4999-b6d1-8cf72d2cb818