PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Dual Speed Laser Remelting for High Densification in H13 Tool Steel Metal 3D Printing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The densification behavior of H13 tool steel powder by dual speed laser scanning strategy have been characterized for selective laser melting process, one of powder bed fusion based metal 3d printing. Under limited given laser power, the laser re-melting increases the relative density and hardness of H13 tool steel with closing pores. The single melt-pool analysis shows that the pores are located on top area of melt pool when the scanning speed is over 400 mm/s while the low scanning speed of 200 mm/s generates pores beneath the melt pool in the form of keyhole mode with the high energy input from the laser. With the second laser scanning, the pores on top area of melt pools are efficiently closed with proper dual combination of scan speed. However pores located beneath the melt pools could not be removed by second laser scanning. When each layer of 3d printing are re-melted, the relative density and hardness are improved for most dual combination of scanning. Among the scan speed combination, the 600 mm/s by 400 mm/s leads to the highest relative density, 99.94% with hardness of 53.5 HRC. This densification characterization with H13 tool steel laser re-melting can be efficiently applied for tool steel component manufacturing via metal 3d printing.
Twórcy
autor
  • 3D Printing Materials Center, Korea Institute of Materials Science, 797 Changwon-daero, Jungang-dong, Seongsan-gu, Chanwon-si, Gyeongsangnam-do, South Korea
autor
  • 3D Printing Materials Center, Korea Institute of Materials Science, 797 Changwon-daero, Jungang-dong, Seongsan-gu, Chanwon-si, Gyeongsangnam-do, South Korea
autor
  • 3D Printing Materials Center, Korea Institute of Materials Science, 797 Changwon-daero, Jungang-dong, Seongsan-gu, Chanwon-si, Gyeongsangnam-do, South Korea
autor
  • 3D Printing Materials Center, Korea Institute of Materials Science, 797 Changwon-daero, Jungang-dong, Seongsan-gu, Chanwon-si, Gyeongsangnam-do, South Korea
  • 3D Printing Materials Center, Korea Institute of Materials Science, 797 Changwon-daero, Jungang-dong, Seongsan-gu, Chanwon-si, Gyeongsangnam-do, South Korea
autor
  • 3D Printing Materials Center, Korea Institute of Materials Science, 797 Changwon-daero, Jungang-dong, Seongsan-gu, Chanwon-si, Gyeongsangnam-do, South Korea
autor
  • 3D Printing Materials Center, Korea Institute of Materials Science, 797 Changwon-daero, Jungang-dong, Seongsan-gu, Chanwon-si, Gyeongsangnam-do, South Korea
Bibliografia
  • [1] M. Kang, G. Park, J. G. Jung, B. H. Kim, Y. K. Lee, The effects of annealing temperature and cooling rate on carbide precipitation behavior in H13 hot-work tool steel, Journal of Alloys and Compounds 627, 359-366 (2015),
  • [2] J. Y. Li, Y. L. Chen, J. H. Huo, Mechanism of improvement on strength and toughness of H13 die steel by nitrogen, Materials Science and Engineering: A 640, 16-23 (2015).
  • [3] J. Krell, A. Rottger, K. Ggeenen, W. Theisen, General investigations on processing tool steel X40CrMoV5-1 with selective laser melting, Journal of Materials Processing Tech. 255, 679-688 (2018).
  • [4] F. Deirmina, B. Mangour, D. Grzesiak, M. Pellizzari, H13-partially stabilized zirconia nanocomposites fabricated by high-energy mechanical milling and selective laser melting, Materials and Design 146, 286-297 (2018).
  • [5] S. Bremen, W. Meiners, A. Diatlov, Selective laser melting, Laser Technik Journal 9, 33-38 (2012).
  • [6] C. Y. Yap et al., Review of selective laser melting: Materials and applications, Applied Physics Reviews 2, 4 (2015).
  • [7] A. Armillotta, R. Baraggi, S. Fasoli, SLM tooling for dies casting with conformal cooling channels, International Journal of Advanced Manufacturing Technology 71, 573-583 (2014).
  • [8] S. A. Khairallah, A. T. Anderson, A. Rubenchik, W. E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Materialia 108, 36-45 (2016).
  • [9] C. Qiu, C. Panwisawas, M. Ward, H. C. Basoalto, J. W. Brroks, M. M. Attallah, On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Materialia 96, 72-79 (2015).
  • [10] G. Tapia, A. H. Elwany, H. Sang, Prediction of porosity in metalbased additive manufacturing using spatial Gaussian proces models, Additive Manufacturing 12, 282-290 (2016).
  • [11] P. Laakso, T. Riipinen, A. Laukkanen, T. Andersson, A. Jokinen, A. Revuelta, K. Ruusuvuori, Optimization and simulation of SLM process for high density H13 tool steel parts, Physics Procedia 83, 26-35 (2016).
  • [12] T.H.C. Childs, C. Hauser, M. Badrossamary, Selective laser sintering (melting) of stainless and tool steel powders: experiments and modelling, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 219, 339-357 (2005).
  • [13] S. Das, M. Wohlert, J. J. Beaman, D. L. Bourell, The journal of the materials, metals & materials society (TMS) 50, 17-20 (1998).
  • [14] S. T. Williams, P. J. Withers, I. Todd, P. D. Prangnell, The Effectiveness of Hot Isostatic Pressing for Closing Porosity in Titanium Parts Manufactured by Selective Electron Beam Melting, Metallurgical and Materials Transactions A 47, 1939-1946 (2016).
  • [15] T. Hwang, Y. Y. Woo, S. W. Han, Y. H. Moon, Functionally graded properties in directed-energy-deposition titanium parts, Optics and Laser Technology 105, 80-88 (2018).
  • [16] M. Hirsch et. al., Targeted rework strategies for powder bed additive manufacture, Additive Manufacturing 19, 127-133 (2018).
  • [17] E. Yasa, J. Kruth, Application of laser re-melting on selective laser melting parts, Advances in Production Engineering & Management 6, 259-270 (2011).
  • [18] E. Kayahan, A post-processing study on aluminum surface by fiber laser: Removing face milling patterns, Optics and Laser Technology 101, 440-445 (2018).
  • [19] S. Zhou et. al., Effect of laser remelting on microstructure and properties of WC reinforced Fe-based amorphous composite coatings by laser cladding, Optics and Laser Technology 103, 8-16 (2018).
  • [20] J. Vaithilingam, R. D. Goodrige, R.J.M. Hauge, S.D.R. Christie, S. Edmondson, The effect of laser remelting on the surface chemistry of Ti6al4Vcomponents fabricated by selective laser melting, Journal of Materials Processing Technology 232, 1-8 (2016).
  • [21] T. F. Flint, C. Panwisawas, Y. Sovani, M. C. Smith, H. C. Basoalto, Prediction of grain structure evolution during rapid solidification of high energy density beam induced re-melting, Materials and Design 147, 200-210 (2018).
  • [22] I. Yadroitsev, P. Bertrand, I. Smurov, Parametric analysis of the selective laser melting process, Applied surface science 253, 8064-8069 (2007).
  • [23] W. E. King et al., Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing, Journal of Materials Processing Technology 214, 2915-2925 (2014).
  • [24] D. Dai, D. Gu, Effect of metal vaporization behavior on keyholemode surface morphology of selective laser melted composites using different protective atmospheres, Applied Surface Science 355, 310-319 (2015).
  • [25] U. S. Bertoli, A. J. Wolfer, M. J. Matthews, J.P.R. Delplanque, J. M. Schoenung, On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting, Materials & Design 113, 331-340 (2017).
Uwagi
EN
1. This study was supported financially by Fundamental Research Program "Development of High Performance Materials and Processes for Metal 3D Printing (PNK6050)” of the Korean Institute of Materials Science (KIMS).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fc83331-5514-4096-aea0-9ddda8f8563a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.