PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Trenched Hemispherical Pin Fins on Cooling Performance of Heat Sink

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pin fins have the potential to improve the thermal performance of various engineering devices. Modified pin fins could further increase their thermal performance in a passive way at lower cost. This study is aimed to numerically investigate the thermal performance of trenched hemispherical pin fins heat sink (THPFHS) and the influence of parameters including the trench number (N=1, 3 and 5) and thickness (e =1 to 5 mm). The simulations are performed using a CFD software considering turbulent air flow conditions. Results show that the use of aluminum fins fitted with one trench in the middle of the hemispherical pin fin considerably increases the local heat transfer. Furthermore, all studied configurations show high thermal performance factor (HTPF) compared with the conventional CPFHS (cylindrical pin fins heat sink). For this new configuration (THPFHS), Nu increases by 45% while the thermal resistance reduces by 42%, compared to the baseline case. On the other hand, this improved performance results in 50% pressure drop penalty. Moreover, the obtained results show a significant improvement in the performance mainly at high Re.
Słowa kluczowe
Twórcy
autor
  • LEDMSD, University AmarTelidji, Laghouat 03000, Algeria
  • LMe, University Amar Telidji, Laghouat 03000, Algeria
  • Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha, Saudi Arabia
autor
  • LCGE, UST-Oran-MB, Oran 31000, Algeria
  • LMe, University Amar Telidji, Laghouat 03000, Algeria
  • LPMCN Laboratory, Faculty of Exact Sciences and Computer Science, University of Jijel, Jijel 18000, Algeria
  • Mechanical Engineering Department, Engineering Faculty, Kocaeli University, Kocaeli, Turkey
  • Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha, Saudi Arabia
Bibliografia
  • 1. H.M. Ali, A. Arshad, Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices, International Journal of Heat and Mass Transfer, 112
  • (2017) 649-661.
  • 2. K. Bilen, U. Akyol, S. Yapici, Heat transfer and friction correlations and thermal performance analysis for a finned surface, Energy Conversion and Management, 42(9) (2001) 1071-1083.
  • 3. E.R. Meinders, T.H. Van Der Meer, K. Hanjalic, Local convective heat transfer from an array of wallmounted cubes, International Journal of Heat and Mass Transfer, 41(2) (1998) 335-346.
  • 4. O.N. Sara, T. Pekdemir, S. Yapici, M. Yilmaz, Heat- transfer enhancement in a channel flow with per- forated rectangular blocks, International Journal of Heat and Fluid Flow, 22(5) (2001) 509-518.
  • 5. A. Yousfi, D. Sahel, M. Mellal, Effects of A Pyramidal Pin Fins on CPU Heat Sink Performances, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 63(2) (2020) 260-273.
  • 6. M.R. Shaeri, M. Yaghoubi, Numerical analysis of perforated fins, International Journal of Heat and Fluid Flow, 30(2) (2009) 218-228.
  • 7. M.F. Ismail, M.N. Hasan, M. Ali, Numerical simulation of turbulent heat transfer from perforated plate-fin heat sinks, Heat and Mass Transfer, 50(4) (2014) 509-519.
  • 8. G. Song, D.-H. Kim, D.-H. Song, J.-B. Sung, S.-J. Yook, Heat-dissipation performance of cylindrical heat sink with perforated fins, International Journal of Thermal Sciences, 170 (2021) 107132.
  • 9. T.K. Ibrahim, A.T. Al-Sammarraie, W.H. Al-Taha, M.R. Salimpour, M. Al-Jethelah, A.N. Abdalla, H. Tao, Experimental and numerical investigation of heat transfer augmentation in heat sinks using perforation technique, Applied Thermal Engineering, 160 (2019) 113974.
  • 10. M. Reid, C. Sun, M. El Sayed, Topology Optimization of Heat Sinks for High Efficiency Electronics Employing Simplified Convection Model, in: AIAA Scitech 2020 Forum, American Institute of Aeronautics and Astronautics, 2020.
  • 11. C.-H. Huang, Y.-C. Liu, H. Ay, The design of optimum perforation diameters for pin fin array for heat transfer enhancement, International Journal of Heat and Mass Transfer, 84 (2015) 752-765.
  • 12. S. Zeng, Q. Sun, P.S. Lee, Thermohydraulic analysis of a new fin pattern derived from topology optimized heat sink structures, International Journal of Heat and Mass Transfer, 147 (2020) 118909.
  • 13. D. Sahel, L. Bellahcene, A. Yousfi, A. Subasi, Numerical investigation and optimization of a heat sink having hemispherical pin fins, International Communications in Heat and Mass Transfer, 122 (2021) 105133.
  • 14. Y.-H. Pan, R. Zhao, Y.-L. Nian, W.-L. Cheng, Numerical study on heat transfer characteristics of a pin–fin staggered manifold microchannel heat sink, Applied Thermal Engineering, 219 (2023) 119436.
  • 15. H. Babar, H. Wu, H.M. Ali, W. Zhang, Hydrothermal performance of inline and staggered arrangements of airfoil shaped pin-fin heat sinks: A comparative study, Thermal Science and Engineering Progress, 37 (2023) 101616.
  • 16. M. Abuşka, V. Çorumlu, A comparative experimental thermal performance analysis of conical pin fin heat sink with staggered and modified staggered layout under forced convection, Thermal Science and Engineering Progress, 37 (2023) 101560.
  • 17. A. Heidarshenas, Z. Azizi, S.M. Peyghambarzadeh, S. Sayyahi, Experimental investigation of heat transfer enhancement using ionic liquid-Al2O3 hybrid nanofluid in a cylindrical microchannel heat sink, Applied Thermal Engineering, 191 (2021) 116879.
  • 18. R. Avinash Kumar, M. Kavitha, P. Manoj Kumar, S. Arvindh Seshadri, Numerical study of graphene-platinum hybrid nanofluid in microchannel forturbulent convection heat transfer from an array of electronics cooling, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(21) (2021) 5845-5857.
  • 19. G. Sriharan, S. Harikrishnan, H.M. Ali, Enhanced heat transfer characteristics of the mini hexagonal tube heat sink using hybrid nanofluids, Nanotechnology, 33(47) (2022) 475403.
  • 20. D. Yang, Y. Wang, G. Ding, Z. Jin, J. Zhao, G. Wang, Numerical and experimental analysis of cooling per-formance of single-phase array microchannel heat sinks with different pin-fin configurations, Applied Thermal Engineering, 112 (2017) 1547-1556.
  • 21. K.-S. Yang, W.-H. Chu, I.-Y. Chen, C.-C. Wang, A comparative study of the airside performance of heat sinks having pin fin configurations, International Journal of Heat and Mass Transfer, 50(23) (2007) 4661-4667.
  • 22. Y. Khetib, K. Sedraoui, A. Gari, Numerical study of the effects of pin geometry and configuration in micro-pin-fin heat sinks for turbulent flows, Case Studies in Thermal Engineering, 27 (2021) 101243.
  • 23. K. Nilpueng, M. Mesgarpour, L.G. Asirvatham, A.S. Dalkılıç, H.S. Ahn, O. Mahian, S. Wongwises, Effect of pin fin configuration on thermal performance of plate pin fin heat sinks, Case Studies in Thermal Engineering, 27 (2021) 101269.
  • 24. K. Yakut, N. Alemdaroglu, I. Kotcioglu, C. Celik, Experimental investigation of thermal resistance of a heat sink with hexagonal fins, Applied Thermal Engineering, 26(17) (2006) 2262-2271.
  • 25. R. Pakrouh, M.J. Hosseini, A.A. Ranjbar, R. Bahrampoury, A numerical method for PCM-based pin fin heat sinks optimization, Energy Conversion and Management, 103 (2015) 542-552.
  • 26. R. Baby, C. Balaji, Thermal optimization of PCM based pin fin heat sinks: An experimental study, Applied Thermal Engineering, 54(1) (2013) 65-77. 27. M. Sivashankar, C. Selvam, Experimental investigation on the thermal performance of low-concentrated photovoltaic module using various pin-fin configurations of heat sink with phase change materials, Journal of Energy Storage, 55 (2022) 105575.
  • 28. A. Arshad, H.M. Ali, M. Ali, S. Manzoor, Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: Effect of pin thickness and PCM volume fraction, Applied Thermal Engineering, 112 (2017) 143-155.
  • 29. H.M. Ali, M.J. Ashraf, A. Giovannelli, M. Irfan, T.B. Irshad, H.M. Hamid, F. Hassan, A. Arshad, Thermal management of electronics: An experimental anal- ysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs, International Journal of Heat and Mass Transfer, 123 (2018) 272-284.
  • 30. S.-B. Chin, J.-J. Foo, Y.-L. Lai, T.K.-K. Yong, Forced convective heat transfer enhancement with perforated pin fins, Heat and Mass Transfer, 49(10) (2013) 1447-1458.
  • 31. Y.-T. Yang, H.-S. Peng, Investigation of planted pin fins for heat transfer enhancement in plate fin heat sink, Microelectronics Reliability, 49(2) (2009) 163-169.
  • 32. C. Multiphysics, CFD Module User ’s Guide, COMSOL Multiphysics ed., 2016
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fbf197c-4e36-4c09-96d0-717201814098
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.