PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An efficient iteration procedure for form finding of slack cables under concentrated forces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of paper is the development and demonstration of efficiency of algorithm for form finding of a slack cable notwithstanding of the initial position chosen. This algorithm is based on product of two sets of coefficients, which restrict the rate of looking for cable geometry changes at each iteration. The first set restricts the maximum allowable change of absolute values of positions, angles and axial forces. The second set takes into account whether the process is the converging one (the signs of maximal change of parameters remain the same), so that it increases the allowable changes; or it is a diverging one, so that these changes are discarded. The proposed procedure is applied to two different methods of simple slack cable calculation under a number of concentrated forces. The first one is a typical finite element method, with the cable considered as consisting of number of straight elements, with unknown positions of their ends, and it is essentially an absolute coordinate method. The second method is a typical Irvine’s like analytical solution, which presents only two unknowns at the initial point of the cable; due to the peculiarity of implementation it is named here a shooting method. Convergence process is investigated for both solutions for arbitrary chosen, even very illogical initial positions for the ACM, and for angle and force at the left end for SM as well. Even if both methods provide the same correct convergent results, it is found that the ACM requires a much lower number of iterations.
Rocznik
Strony
645--663
Opis fizyczny
Bibliogr. 18 poz., il., tab.
Twórcy
autor
  • Department of Applied Mathematics, National Technical University, Kiev Polytechnic Institute, Kyiv, Ukraine
  • Department of Structural Engineering, University of Naples “Federico II”, Napoli, Italy
  • Department of Structural Engineering, University of Naples “Federico II”, Napoli, Italy
  • Department of Applied Mathematics, National Technical University, Polytechnic Institute, Kyiv, Ukraine (student)
Bibliografia
  • [1] H.M. Irvine, G.B. Sinclair, “The suspended elastic cable under the action of concentrated vertical loads”, International Journal of Solids and Structures, 1975, vol. 12, no. 4, pp. 309-317, DOI: 10.1016/0020-7683(76)90080-9.
  • [2] H.M. Irvine, Cable structures. Cambridge, MIT Press, 1981, DOI: 10.1002/eqe.4290100213.
  • [3] W.T. O’Brien, “General solution of suspended cable Problems”, Journal of Structural Division , 1967, vol. 94, no. 1, pp. 1-26, DOI: 10.1061/JSDEAG.0001574.
  • [4] H.B. Jayaraman, W.C. Knudson, “A Curved Element for the Analysis of Cable Structures”, Computers and Structures, 1981, vol. 14, no. 3-4, pp. 325-333, DOI: 10.1016/0045-7949(81)90016-X.
  • [5] N. Impollonia, G. Ricciardi, F. Saitta, “Statics of elastic cables under 3D point forces”, International Journal of Solids and Structures, 2011, vol. 48, no. 9, pp. 1268-1276, DOI: 10.1016/j.ijsolstr.2011.01.007.
  • [6] M.S.A. Abad, A. Shooshtari, V. Esmaeili, A.N. Riabi, “Nonlinear analysis of cable structures under general loadings”, Finite Elements in Analysis and Design, 2013, vol. 73, pp. 11-19, DOI: 10.1016/j.finel.2013.05.002.
  • [7] Z. Chen, H. Cao, H. Zhu, “An Iterative Calculation Method for Suspension Bridge’s Cable System Based on Exact Catenary Theory”, Baltic Journal of Road and Bridge Engineering, 2013, vol. 8, no. 3, pp. 196-204, DOI: 10.3846/bjrbe.2013.25.
  • [8] D. Papini, “On shape control of cables under vertical static loads”, Master’s thesis, Lund University, 2010.
  • [9] J.H. Argyris, T. Angelopoulos, B. Bichat, “A general method for the shape finding of lightweight tension structures”, Computer Methods in Applied Mechanics and Engineering, 1974, vol. 3, no. 1, pp. 135-149, DOI: 10.1016/0045-7825(74)90046-2.
  • [10] M. Crusells-Girona, F.C. Filippou, R.L. Taylor, “A mixed formulation for nonlinear analysis of cable structures”, Computers & Structures, 2017, vol. 186, pp. 50-61, DOI: 10.1016/j.compstruc.2017.03.011.
  • [11] M. Ahmadizadeh, “Three-dimensional geometrically nonlinear analysis of slack cable structures”, Computers & Structures, 2013, vol. 128, pp. 160-169, DOI: 10.1016/j.compstruc.2013.06.005.
  • [12] I. Orynyak, Z. Yaskovets, R. Mazuryk, “A novel numerical approach to the analysis of axial stress accumulation in pipelines subjected to mine subsidence”, Journal of Pipeline Systems Engineering and Practice, 2019, vol. 10, no. 4, DOI: 10.1061/(ASCE)PS.1949-1204.0000405.
  • [13] I. Orynyak, R. Mazuryk, A. Orynyak, “Basic (discontinuous) and smoothing up (conjugated) solutions in transfer matrix method for static geometrically nonlinear beam and cable in plane”, Journal of Engineering Mechanics, 2020, vol. 46, no. 5, DOI: 10.1061/(ASCE)EM.1943-7889.0001753.
  • [14] I. Orynyak, R. Mazuryk, “Application of method of discontinuous basic and enhanced smoothing solutions for 3D multibranched cable”, Engineering Structures, 2022, vol. 251, Part B, DOI: 10.1016/j.engstruct.2021.113582.
  • [15] A.A. Shabana, Y.Y. Refaat, “Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory”, Journal of Mechanical Design,2001, vol. 123, no. 4, pp. 606-613, DOI: 10.1115/1.1410100.
  • [16] M. Tur, E. García, L. Baeza, F.J. Fuenmayor, “A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary”, Engineering Structures,2014, vol. 71, pp. 234-243, DOI: 10.1016/j.engstruct.2014.04.015.
  • [17] F. Guarracino, V. Mallardo, “A refined analytical analysis of submerged pipelines in seabed laying”, Applied Ocean Research, 1999, vol. 21, no. 6, pp. 281-293, DOI: 10.1016/S0141-1187(99)00020-6.
  • [18] Z.S. Yaskovets, I.V. Orynyak, “Application of the Method of Shooting for the Rapid Determination of the Stressed State of Underground Parts of Pipelines in the Zone Of Mine Works”, Materials Science, 2019, vol. 54, no. 6, pp. 889-898, DOI: 10.1007/s11003-019-00277-0.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fbdefdc-74b8-4adb-a48d-7389c03c0f20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.