PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cellulose based micro- and nanocomposites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this study, the comparative role of micro-and nano- sized cellulose powder in exploring the influence on the mechanical properties of high density polyethylene (HDPE) composites was investigated. Design/methodology/approach: For production of alpha-cellulose and nanocrystalline cellulose, pulp was produced from Turkish pine (Pinus brutia Ten.) sapwood by Kraft pulping technique. Firstly, alpha-cellulose was isolated from Turkish pine pulp. After that, microcellulose and nanocrystalline cellulose were produced from this alpha-cellulose by grinding and acid hydrolysis technique, respectively. In order to compare the effect of micro-cellulose or nanocrystalline cellulose (CNC) as a filler, micro-cellulose or CNC and HDPE composites were produced with 3 different wt% cellulose containing (1.5 and 10 wt%). Findings: The nanocrystalline cellulose-filled HDPE had a significantly higher tensile and impact strength than the micro-cellulose-filled HDPE composites.
Rocznik
Strony
9--14
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Faculty of Forestry, İzmir Katip Çelebi University, İzmir, Turkey
autor
  • Faculty of Forestry, İzmir Katip Çelebi University, İzmir, Turkey
Bibliografia
  • [1] M.M.D.S. Lima, R. Borsali, Rod like cellulose microcrystal’s: Structure, properties, and applications, Macromolecular Rapid Communications 25 (2004) 771-787.
  • [2] C.A.S. Hill, Wood Modification. Chemical, Thermal and Other Processes, Published by John Wiley & Sons, Chichester, 2006.
  • [3] V. Favier, H. Chanzy, J.Y. Cavaillé, Polymer nanocomposites reinforced by cellulose whisker, Macromolecules 28 (1995) 6365-6367.
  • [4] V. Favier, G. Canova, J.Y. Cavaillé, H. Chanzy, A. Dufresne, C. Gauthier, Nanocomposite materials from latex and cellulose whiskers, Polymers for Advanced Technologies 6 (1995) 351-355.
  • [5] M.A.S. Azizi Samir, F. Alloin, J.Y. Sanchez, N. El Kissi, A. Dufresne, Preparation of cellulose whiskers reinforced nanocomposites from an organic medium suspension, Macromolecules 37 (2004) 1386-1393.
  • [6] M.A.S. Azizi Samir, F. Alloin, A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules 6 (2005) 612-626.
  • [7] D. Bondeson, A. Mathew, K. Oksman, Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis, Cellulose 13 (2006) 171-180.
  • [8] H. Chanzy, Aspects of cellulose structure, in Cellulose Sources and Exploitation, J.F. Kennedy, G.O. Phillips, P.A., Williams, Published by Ellis Horwood, New York, 1990.
  • [9] J.F. Revol, L. Godbout, X.M. Dong, D.G. Gray, H. Chanzy, G. Maret, Chiral nematic suspensions of cellulose crystallites phase separation and magnetic field orientation, Liquid Crystals 16 (1994) 127-134.
  • [10] J. Sugiyama, H. Chanzy, J.F. Revol, On the polarity of cellulose in the cell wall of Valonia, Planta 193 (1994) 260-265.
  • [11] T. Nishino, K. Takano, K Nakamae, Elastic modulus of the crystalline regions of cellulose polymorphs, Journal of Polymer Science Part B: Polymer Physics 33 (1995) 1647-1651.
  • [12] A. Strucova, G.R. Davies, S.J. Eichorn, Elastic modulus and stress-transfer properties of tunicate cellulose, Biomacromolecules 6 (2005) 1055-1061.
  • [13] K. Tashiro, M. Kobayashi, Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds, Polymer 32 (1991) 1516-1526.
  • [14] D. Dubief, E. Samain, A. Dufresne, Polysaccharide microcrystals reinforced amorphous poly(âhydroxyoctanoate) nanocomposite materials, Macromolecules 32 (1999) 5765-5771.
  • [15] A. Dufresne, M. Kellerhals, B. Witholt, Transcrystallization in mcl-PHAs/cellulose whiskers composites Macromolecules 32 (1999) 7396-7401.
  • [16] A. Dufresne, Interfacial phenomena in nanocomposites based on polysaccharide nanocrystals, Composite Interfaces 10 (2003) 369-388.
  • [17] M.N. Angles, A. Dufresne, Plasticized starch/tunicin whiskers nanocomposites: 1. Structural analysis, Macromolecules 33 (2000) 8344-8353.
  • [18] Y. Noshiki, Y. Nishiyama, M. Wada, S. Kuga, J. Magoshi, Mechanical properties of silk fibroinmicrocrystalline cellulose composite films Journal of Applied Polymer Science 86 (2002), 3425-3429.
  • [19] M. Grunert, W.T. Winter, Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. Journal of Polymers and the Environments 10 (2002), 27-30.
  • [20] W. Helbert, J.Y. Cavaillé, A. Dufresne, Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behaviour, Polymer Composites 17 (1996) 604-611.
  • [21] M. Matos Ruiz, J.Y. Cavaille´, A. Dufresne, C. Graillat, J.F. Ge´rard, New waterborne epoxy coatings based on cellulose nanofillers, Macromolecular Symposia 169 (2001) 211-222.
  • [22] A.J. de Menezes, G. Siqueira, A.A.S. Curvelo, A. Dufresne, Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites, Polymer 50 (2009) 4552-4563.
  • [23] H Farahbakhsh Cotton-based cellulose nanomaterials for applications in composites and electronics, PhD thesis, North Carolina State University, 2015.
  • [24] Tappi T 210 cm-03, Sampling and testing wood pulp shipments for moisture, Tappi Test Methods, Tappi Pres, Atlanta, 2003.
  • [25] N.S. Çetin, P. Tingaut, N. ÖzmenHenry, D. Harper, M. Dadmun, G. Sebe, Acetylation of Cellulose Nanowhiskers with Vinyl Acetate under Moderate Conditions, Macromolecular Bioscience 9 (2009) 997-1003.
  • [26] American Society for Testing and Materials (2010), Standard Practice for Compression Molding Thermoplastic Materials into test Specimens, Plaques, or Sheets. ASTM D4703-10. West Conshohocken, PA, USA: ASTM.
  • [27] American Society for Testing and Materials (2001). ASTM D638, Standard Test Method for Tensile Properties of Plastics. West Conshohocken, PA, USA: ASTM.
  • [28] American Society for Testing and Materials (2005). ASTM D6109, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastic Lumber and Related Products. West Conshohocken, PA, USA: ASTM.
  • [29] American Society for Testing and Materials. ASTM D256 (2005). Standard Test Methods for Impact Resistance of Plastics and Electrical Insulating Materials. West Conshohocken, PA, USA: ASTM.
  • [30] N. Özmen, N.S. Çetin, F. Mengelolu, E. Birinci, K. Karaku Effect of vinyl acetate modification on the properties of woodplastic composites, Bio Resources 8 (2013) 753-767.
  • [31] N.S. Çetin, N. Özmen, N. Narlıolu, V. Çavu, Effect of bark flour on the mechanical properties of HDPE composites, II. Ulusal Ege Kompozit Malzemeler Sempozyumu, 2013, 452-463 (in Turkish).
  • [32] N.S. Çetin, N. Özmen, D.P. Harper, Vinyl acetatemodified microcrystalline cellulose-reinforced HDPE composites prepared by twin-screw extrusion, Turkish Journal of Agriculture and Forestry 39 (2015) 39-47.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fbdde31-66b8-4d5f-ba6c-7471eabb33b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.