PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Moisture Management Properties of Seersucker Woven Fabrics of Different Structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Właściwości zarządzania wilgocią tkanin gofrowanych o zróżnicowanej strukturze
Języki publikacji
EN
Abstrakty
EN
Moisture management is defined as the controlled movement of water vapour and liquid water (perspiration) from the surface of the skin to the atmosphere through the fabric. The ability of moisture transport is a very important feature of textile materials from the point of view of the physiological comfort of usage clothing made of these materials. Among the different textile materials (woven, knitted and nonwoven), seersucker woven fabric is considered as having good comfort-related properties. The fabrics are characterised by the occurrence of puckered and flat strips in the warp direction. The puckered effect generates air spacesbetween the body and the fabric, keeping the wearer cool in hot conditions as the puckered area holds the fabric away from the skin during usage. In the work presented, seersucker woven fabrics of different patterns of the puckered strips were investigated. The aim of the work was to analyse the relationship between the structure of seersucker fabrics and their moisture management properties. Measurement of the moisture transport properties of seersucker woven fabrics was made using a Moisture Management Tester M290, produced by SDL Atlas. Investigations performed showed that the properties of seersucker woven fabrics characterising their ability to transfer liquid moisture are different depending on the variant of the repeat of puckered strips.
PL
Tkaniny gofrowane charakteryzują się występowaniem wypukłych i płaskich pasków w kierunku osnowy. Tworzą trójwymiarową strukturę tkaną. Taka struktura wpływa znacząco na właściwości tkanin. W pracy wykonano badania tkaniny gofrowanych o różnym raporcie gofrowania. Celem pracy była analiza zależności między strukturą tkanin gofrowanych a ich właściwościami charakteryzującymi zdolność tkanin do transportu wilgoci. Pomiary właściwości transportu wilgoci tkanin gofrowanych wykonano za pomocą przyrządu Moisture Management Tester M290 firmy SDL Atlas. Przeprowadzone badania wykazały, że właściwości tkanin gofrowanych charakteryzujących ich zdolność transportu wilgoci w postaci płynnej różnią się w zależności od raportu efektu gofrowania.
Rocznik
Strony
43--50
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Lodz University of Technology, Faculty of Material Technologies and Textile Design, Institute of Architecture of Textiles, Lodz, Poland
Bibliografia
  • 1. Nemcokova R, Glombikova V, Komarkova P. Study on Liquid Moisture Transport of Knitted Fabrics by Means of Mmt, Thermography and Microtomography Systems. Autex Research Journal 2015; 15, 4: 233-242.
  • 2. Rossi R. Interactions between protection and thermal comfort, chapter in textiles for protection, edited by Scott A, Woodhead Publishing Ltd, Cambridge England, 2005, ISBN-13: 978-1-85573- 921-5, p. 233-260
  • 3. ISO 7730 1984 Moderate thermal environments – Determination of the PMV and PPD indices and specification of the conditions for thermal comfort.
  • 4. Hes L. Alternative Methods of Determination of Water Vapour Resistance of Fabrics by Means of a Skin Model, 3rd European Conference on Protective Clothing and NOKOBETEF 8, Gdynia, 2006.
  • 5. Matusiak M. Thermal Insulation of Woven Fabrics for Clothing. Monograph, Works of Textile Research Institute, Special edition, Ed. Textile Research Institute, Lodz, Poland, 2011.
  • 6. Jianhua H, Xiaoming Q. Comparison of Test Methods for Measuring Water Vapor Permeability of Fabrics. Textile Research Journal; Apr 2008; 78, 4: 342-352.
  • 7. Skenderi Z, Salopek Čubrić I, Srdjak M. Water Vapour Resistance of Knitted Fabrics under Different Environmental Conditions. FIBRES & TEXTILES in Eastern Europe 2009; 17, 2(73): 72-75.
  • 8. Chinta SK, Gujar PD. Significance of Moisture Management in Textiles. International Journal of Innovative Research in Science, Engineering and Technology 2013; 2, 6: 2104-2114.
  • 9. Zhong W. Surface tension, wetting and wicking, chapter in: chapter in textiles for protection, edited by Scott A., Woodhead Publishing Ltd, Cambridge England, 2005, ISBN-13: 978-1-85573-921-5, 136-155.
  • 10. Mayur B, Mrinal C, Saptarshi M, Adivarekar R. Moisture Management Properties of Textiles and Its Evaluation. Current Trends in Fashion Technology & Textile Engineering 2018; 3(3): 555611.
  • 11. Patnaik A, Rengasamy RS, Kothari VK, Ghosh A. Wetting and Wicking in Fibrous Materials. Textile Progress 2006, 38, 1: 1-105.
  • 12. Harnett PR, Mehta PN, Survey and Comparison of Laboratory Test Methods for Measuring Wicking. Textile Research Journal 1984; 54, 7: 471-478.
  • 13. Kissa E. Wetting and wicking. Textile Research Journal 1996, 66: 660-668.
  • 14. Hes L, Dolezal I. A New Computer-Controlled Skin Model for Fast Determination of Water Vapour and Thermal Resistance of Fabrics. 7th Asian Textile Conference, New Delhi, 2003.
  • 15. International Standard ISO 11902:1993. Textiles – Determination of physiological properties – Measurement of thermal and water-vapour resistance under steady-state conditions (sweating guarded-hotplate test).
  • 16. AATCC Test Method 197, Vertical Wicking of Textiles.
  • 17. SDL Atlas MMT M 290 manual.
  • 18. Özdil N, Gamze Süpüren G, Özçelik G, Průchová J. A Study on The Moisture Transport Properties of the Cotton Knitted Fabrics in Single Jersey Structure. Tekstil Ve Konfeksiyon 2009; 3: 218- 223.
  • 19. Öner E, Atasağun HG, Okur A, Beden AR, Durur G. Evaluation of moisture management properties on knitted fabrics. Journal of The Textile Institute 2013; 104: 7, 699-707.
  • 20. Sai Sangurai G, Radhalakshmi YC, Subramaniam V. Effect of polyester cross-section on moisture management properties of knitted fabrics. International Journal of Scientific & Engineering Research 2014; 5, 3, 69: 69-74
  • 21. Mangat MM, Hussain T, BajzikV. Impact of Different Weft Materials and Washing Treatments on Moisture Management Characteristics of Denim. Journal of Engineered Fibers and Fabrics 2012; 7, 1: 38-49.
  • 22. Çeven EK, Günaydin GK. Investigation of Moisture Management and Air Permeability Properties of Fabrics with Linen and Linen-Polyester Blend Yarns. FIBRES & TEXTILES in Eastern Europe 2018; 26, 4(130): 39-47. DOI: 10.5604/01.3001.0012.1311.
  • 23. Chen X, Taylor LW, Tsai LJ. An Overview on Fabrication of Three-Dimensional Woven Textile Preforms for Composites. Textile Research Journal 2011; 81, 9: 932-944.
  • 24. Soden JA, Hill J. Conventional Weaving of Shaped Preforms for Engineering Composites. Composites Part A 1998, 29A: 757-762.
  • 25. Bilisik AK. Multiaxial Three-dimensional (3-D) Circular Woven Fabric. Patent No. USP 129 122, 2000.
  • 26. Unal PG. 3D Woven Fabrics, chapter in: Woven Fabrics edited by Han-Yong Jeon, InTech, Rijeka, Croatia, 2012, 91-120, ISBN 978-953-51-0607-4.
  • 27. Matusiak M, Wilk E. Investigation of Mechanical and Utility Properties of Two-Layer Cotton Woven Fabrics. Autex Research Journal 2018, 18, 2: 192-202.
  • 28. Gandhi K. Woven Textiles Principles, Technologies and Applications. 1st ed., Woodhead Publishing, ISSN 2042- 0803, New Delhi, 2012
  • 29. Szosland J. Woven structures (in Polish), Polish Academy of Science, Lodz, 2007.
  • 30. Matusiak M, Sikorski K, Wilk E. Innovative woven fabrics for therapeutic clothing, chapter in: Innovations in Textile Materials & Protective Clothing, edited by Bartkowiak G, Frydrych I, Pawłowa M, Warsaw, 2012, 89-106.
  • 31. Ghahraman FG, Tavanai H, Hosseini SA. A qualitative assessment of seersucker effect through spectral density and angular power spectrum function algorithms. The Journal of The Textile Institute 2010; 101 (3): 276-281.
  • 32. Matusiak M, Frącczak Ł. Investigation of 3D Woven Fabric Topography Using Laser-Scanning. FIBRES & TEXTILES in Eastern Europe 2018; 26, 1(127): 81-88.
  • 33. Matusiak M, Frącczak Ł. Influence of Kind of Weft Yarn on Properties of the Seersucker Woven Fabrics. AUTEX Research Journal 2016; 16, 4: 214-221, ISSN: 2300-0929.
  • 34. Ashraf W, Nawab Y, Maqsood M, et al. Development of Seersucker Knitted Fabric for Better Comfort Properties and Aesthetic Appearance. Fibers and Polymers 2015,16, 3: 699-701.
  • 35. Matusiak M, Fracczak Ł. Comfort-related properties of seersucker fabrics in dry and wet state. International Journal of Clothing Science and Technology 2017, 29 3: 366-379.
  • 36. Kyame GJ, Lofton JT. Cool and Carefree Cotton Seersucker, Available from: https://naldc.nal.usda.gov/download/ IND43895201/PDF.
  • 37. Maqsood M, Nawab Y, Javaid MU, Shaker K, Umair M. Development of seersucker fabrics using single warp beam and modelling of their stretch-recovery behaviour. The Journal of The Textile Institute 2014; 1154-1160.
  • 38. Ashraf W, Nawab Y, Maqsood M, et al. Development of Seersucker Knitted Fabric for Better Comfort Properties and Aesthetic Appearance. Fibers and Polymers 2015,16,3: 699-701.
  • 39. Willard D. The Fabric Selector, 1st ed., 2011, Search Press Ltd, 42-78.
  • 40. AASTCC Test Method 195-2011. Liquid Moisture Management Properties of Textile Fabrics.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fb42f7c-0c96-414c-b536-8ab1d25971a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.