Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the study was to analyze the growth and development of two species of duckweed: Lemna minor and Lemna trisulca under different combinations of temperature (15–25 °C) and photoperiod (12–24 hours), while controlling physicochemical parameters such as electrical conductivity, pH, and oxygen content. The plants were placed in synthetic nitrogen medium, and their growth was monitored for 40 days. Statistical methods, including analysis of variance (ANOVA) and principal component analysis (PCA), were used for data analysis. The results showed that both species grow better at higher temperatures (25 °C) and longer photoperiods (24 hours). Lemna minor achieved higher surface coverage up to 58.4% and biomass over 1.44 g fresh weight under optimal conditions (25 °C and a 12-hour photoperiod), indicating its high efficiency in utilizing favourable conditions. Lemna trisulca, on the other hand, showed a more stable increase in biomass (1.03 g fresh weight) and cover 45.8% under its extreme conditions (15 °C and 12-hour photoperiod). Regarding adaptation to changing physicochemical conditions, Lemna minor responded better to favourable parameters, achieving higher growth rates under optimal pH 6.05 and electrical conductivity 31.6 μS/cm, while Lemna trisulca showed stable growth even in more variable conditions, with minimal decrease in growth under higher conductivity (583 μS/cm) and lower pH (6.96). The research findings reveal that Lemna minor is more competitive under optimal conditions, which may result from its more efficient use of available resources. Its rapid growth makes it particularly valuable in bioremediation, while Lemna trisulca may cope better with variable aquatic conditions. The conclusions emphasize the adaptive differences between the two species, which is significant for managing aquatic ecosystems. Lemna minor is suitable for stable environments, whereas Lemna trisulca finds applications in more variable conditions, indicating their diverse potential uses in environmental protection and bioremediation. These studies provide important data on the adaptive capabilities of duckweed, which is essential for effective management of aquatic ecosystems.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
56--72
Opis fizyczny
Bibliogr. 39, rys., tab.
Twórcy
autor
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland
autor
- Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland
Bibliografia
- 1. Akhtar T. A., Lees H. A., Lampi M. A., Enstone D., Brain R. A., and Greenberg B.M. (2010). Photosynthetic redox imbalance influences flavonoid biosynthesis in Lemna gibba. Plant, cell and environment, 33(7), 1205–1219.
- 2. Anderson K. E., Lowman Z., Stomp A.M., Chang J. (2011). Duckweed as a feed ingredient in laying hen diets and its effect on egg production and composition. Int J Poult Sci, 10(1), 4–7.
- 3. Anderson L. and Martin, D. F. (2005). Effect of light quality on the growth of duckweed, Lemna minor L. Florida Scientist, 20–24.
- 4. Appenroth K. J., Krech K., Keresztes A., Fischer W., Koloczek, H. (2010). Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere, 78(3), 216–223.
- 5. Appenroth K. J., Teller S., Horn M. 1996. Photophysiology of turion formation and germination in Spirodela polyrhiza. Biologia plantarum, 38, 95–106.
- 6. Ceschin S., Crescenzi M., Iannelli M. A. (2020). Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters. Environmental Science and Pollution Research, 27(13), 15806–15814.
- 7. Cui W., and Cheng J. J. (2015). Growing duckweed for biofuel production: a review. Plant biology, 17, 16–23.
- 8. Driever S. M., van Nes E. H., Roijackers R. M. (2005). Growth limitation of Lemna minor due to high plant density. Aquatic Botany, 81(3), 245–251.
- 9. Fujii Y., Ogasawara Y., Takahashi Y., Sakata M., Noguchi M., Tamura S., Kodama Y. (2020). The cold-in-duced switch in direction of chloroplast relocation occurs independently of changes in endogenous phototropin levels. PLoS One, 15(5), e0233302.
- 10. Haller W. T., Sutton D. L., Barlowe W. C. (1974). Effects of salinity on growth of several aquatic macrophytes. Ecology, 55(4), 891–894.
- 11. Kufel L., Strzałek M., Wysokińska U., Biardzka E., Oknińska S., Ryś K. (2012). Growth rate of duckweeds (Lemnaceae) in relation to the internal and ambient nutrient concentrations–testing the Droop and Monod models. Pol J Ecol, 60(2), 241–249.
- 12. Landolt E. (1986). Biosystematic investigations in the family of duckweeds (Lemnaceae)(Vol. 2.) The family of Lemnaceae-a monographic study. vol. 1. Veroff Geobot. Inst. ETH, 71, 1-563.
- 13. Landolt E. and Kandeler R. (1987). The family of Lemnaceae –a monographic study vol. 2. Zürich, Switzerland: Veroffentlichungen des Geobotanischen Institutes der Eidgenossischen Technischen Hochschule, Stiftung Rubel.
- 14. Lasfar S., Monette F., Millette L., Azzouz A. (2007). Intrinsic growth rate: a new approach to evaluate the effects of temperature, photoperiod and phosphorus–nitrogen concentrations on duckweed growth under controlled eutrophication. Water research, 41(11), 2333–2340.
- 15. Lemon G. D., Posluszny U., Husband B.C. (2001). Potential and realized rates of vegetative reproduction in Spirodela polyrhiza, Lemna minor, and Wolffia borealis. Aquatic Botany, 70(1), 79–87.
- 16. Liu M., Yu Z., Jiang L., Hou Q., Xie Z., Ma M., Yu S., Pei H. (2021). Monosodium glutamate wastewater assisted seawater to increase lipid productivity in single-celled algae. Renewable Energy, 179, 1793 –1802, https://doi.org/10.1016/j.renene.2021.08.006
- 17. Magalhães I.B., Ferreira J., de Siqueira Castro J., Assis L.R.D., Calijuri M.L. (2021). Technologies for improving microalgae biomass production coupled to effluent treatment: A life cycle approach Algal Research, 57, 102346, https://doi.org/10.1016/j.algal.2021.102346
- 18. McLay C. L. (1976). The effect of pH on the population growth of three species of duckweed: Spirodela oligorrhiza, Lemna minor and Wolffia arrhiza. Freshwater Biology, 6(2), 125–136.
- 19. Paolacci S., Jansen M. A., Harrison S. (2018). Competition between Lemna minuta, Lemna minor, and Azolla filiculoides. Growing fast or being steadfast? Frontiers in Chemistry, 6, 207.
- 20. Pasos-Panqueva J., Baker A., Camargo-Valero M. A. (2024). Unravelling the impact of light, temperature and nutrient dynamics on duckweed growth: A meta-analysis study. Journal of Environmental Management, 366, 121721.
- 21. Puiseux-Dao S. (2018). Phytoplankton model in ecotoxicology Aquatic Ecotoxicology Fundamental Concepts and Methodologies, 2, 163–186, https://doi.org/10.1201/9781351069854
- 22. Radić S., Stipaničev D., Cvjetko P., Rajčić M. M., Širac S., Pevalek-Kozlina B., Pavlica M. (2011). Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters. Ecotoxicology and environmental safety, 74(2), 182–187.
- 23. Sender J. and Różańska-Boczula M. (2024). Preliminary studies of selected Lemna species on the oxygen production potential in relation to some ecological factors. PeerJ, 12, e17322.
- 24. Sree K. S., and Appenroth K. J. (2022). Starch accumulation in duckweeds (Lemnaceae) induced by nutrient deficiency. Emirates Journal of Food and Agriculture, 34(3), 204–212.
- 25. Sree K. S., Bog M., Appenroth K. J. (2016). Taxonomy of duckweeds (Lemnaceae), potential new crop plants. Emirates Journal of Food and Agriculture (EJFA), 28(5).
- 26. Strzałek M., and Kufel L. (2021). Light intensity drives different growth strategies in two duckweed species: Lemna minor L. and Spirodela polyrhiza (L.) Schleiden. PeerJ, 9, e12698.
- 27. Sun Z., Guo W., Yang J., Zhao X., Chen Y., Yao L., Hou H. (2020). Enhanced biomass production and pollutant removal by duckweed in mixotrophic conditions. Bioresource Technology, 317, 124029.
- 28. Tippery N. P., and Les D. H. (2020). Tiny plants with enormous potential: phylogeny and evolution of duckweeds. The duckweed genomes, 19–38.
- 29. Toyama T., Hanaoka T., Tanaka Y., Morikawa M., Mori K. (2018). Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent. Bioresource technology, 250, 464–473.
- 30. Van Dyck I., Vanhoudt N., i Batlle J. V., Horemans N., Nauts R., Van Gompel A., ... and Vangronsveld J. (2021). Effects of environmental parameters on Lemna minor growth: An integrated experimental and modelling approach. Journal of environmental management, 300, 113705.
- 31. Velichkova K., Sirakov I., Staykov Y. (2018). Integrated use of two microalgal species for the treatment of aquaculture effluent and biomass production. Environmental Engineering and Management Journal, 17(7), 1575–1581, https://doi.org/10.30638/eemj.2018.156
- 32. Walsh É., Kuehnhold H., O’Brien S., Coughlan N. E., Jansen M. A. (2021). Light intensity alters the phytoremediation potential of Lemna minor. Environmental Science and Pollution Research, 28, 16394–16407.
- 33. Wang W., and Williams J. M. (1990). The use of phytotoxicity tests (common duckweed, cabbage, and millet) for determining effluent toxicity. Environmental monitoring and assessment, 14, 45–58.
- 34. Xu J, Cheng J.J, Stomp A.M. (2012). Growing Spirodela polyrrhiza in swine wastewater for the production of animal feed and fuel ethanol: a pilot study. Clean Soil Air Water 40(7), 760–765
- 35. Xu J, Cui W, Cheng J.J, Stomp A.M. (2011). Production of high-starch duckweed and its conversion to bioethanol. Biosystems Eng. 110(2), 67–72.
- 36. Xu J., Cui W., Cheng, J. 2012. Temperature and Light Effects on Growth of Lemna minor. Environmental and Experimental Botany, 78, 39–45.
- 37. Xu Y., Ma S., Huang M., Peng M., Bog M., Sree K. S., ... and Zhang J. (2015). Species distribution, genetic diversity and barcoding in the duckweed family (Lemnaceae). Hydrobiologia, 743, 75–87.
- 38. Ziegler P., Adelmann K., Zimmer S., Schmidt C., Appenroth K. J. (2015). Relative in vitro growth rates of duckweeds (L emnaceae)–the most rapidly growing higher plants. Plant biology, 17, 33–41.
- 39. Ziegler P., Appenroth K. J., Sree K. S. (2023). Survival strategies of duckweeds, the world’s smallest Angiosperms. Plants, 12(11), 2215.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fb24e97-5e6c-4d87-8fe2-bd55096c9f1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.