PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rapid comparison of antitumor chemical constituents and mechanisms between Dendrobium nobile and Dendrobium officinale by UPLC-IT-TOF, network pharmacology and experimental verification

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dendrobium nobile and Dendrobium officinale as the main varieties of traditional Chinese medicine Dendrobium are widely used in clinic. The study aimed to systematically explore chemical constituents and their antitumor effect of D. nobile and D. officinale by ultra-performance liquid chromatography coupled with ion trap time-of-flight mass spectrometry (UPLC-IT-TOF), network pharmacology and cancer cell experiments. D. nobile extract and D. officinale extract could significantly inhibit the proliferation of human lung cancer A549 cells, human liver cancer HepG2 cells and human breast cancer MCF-7 cells in the dose-dependent manner (P < 0.05), the antitumor effect of D. officinale extract was stronger than that of D. nobile extract at the same drug concentration. A total of 40 chemical constituents of D. nobile and D. officinale including phenanthrenes, bibenzyls and other types of compounds had been identified by UPLC-IT-TOF, LCMSsolution and MetID software according to retention times, accurate mass, MSⁿ fragmentation, reference compounds and natural product databases. Phenanthrenes with good antitumor activity were mainly present in D. nobile, bibenzyls were the main compounds of D. officinale. Integrated networks of Herb-Compounds-Targets-Cancer revealed that gigantol, moscatilin, tristin, moscatin and densiflorol B were regarded as key antitumor compounds of D. nobile and D. officinale, D. nobile and D. officinale shared 7 targets accounting for 70% of the antitumor core targets, more than half of their antitumor KEGG pathways were similar. The results of molecular docking and western blotting experiments indicated that the antitumor mechanisms of D. nobile and D. officinale may be through inhibiting PI3K-Akt and HIF-1α signaling pathways.
Rocznik
Strony
123--138
Opis fizyczny
Bibliogr. 25 poz., tab., rys., wykr.
Twórcy
autor
  • Department of Pharmaceutical Analysis, School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
  • Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
autor
  • Department of Pharmaceutical Analysis, School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
  • Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
autor
  • Department of Pharmaceutical Analysis, School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
  • Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
autor
  • Department of Pharmaceutical Analysis, School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
autor
  • Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
autor
  • Center for Drug Research and Innovation, Guiyang Dechangxiang Pharmaceutical Co., Ltd., Guiyang 550201, Guizhou, PR China
  • Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
autor
  • Center for Drug Research and Innovation, Guiyang Dechangxiang Pharmaceutical Co., Ltd., Guiyang 550201, Guizhou, PR China
autor
  • Department of Pharmaceutical Analysis, School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
Bibliografia
  • 1. Cakova, V.; Bonte, F.; Lobstein, A. Dendrobium: sources of active ingredients to treat age-related pathologies. Aging Dis. 2017, 8, 827–49.
  • 2. Nie, X. Q.; Chen, Y.; Li, W.; Lu, Y. L. Anti-aging properties of Dendrobium nobile Lindl.: from molecular mechanisms to potential treatments. J. Ethnopharmacol. 2020, 257, 112839.
  • 3. Yan, M. Q.; Yang, Z. Y.; Shi, Q. Q.; Wang, T.; Chen, S. H.; Lv, G. Y. Research progress on protective effects and mechanism of Dendrobii Caulis on metabolic disturbances. Chin. Trad. Herbal Drugs 2019, 50, 2491–7.
  • 4. Tang, H. X.; Zhao, T. W.; Sheng, Y. J.; Zheng, T.; Fu, L. Z.; Zhang, Y. S. Dendrobium officinale Kimura et Migo: a Review on Its Ethnopharmacology, Phytochemistry, Pharmacology and Industrialization. Evid. Based Complement. Alternat. Med. 2017, 2017, 7436259.
  • 5. Zhou, W.; Xia, J.; Sun, W. B.; Liang, Y.; Hao, X. Y.; Tang, L. Current research status of chemical constituents and pharmacological effects of Dendrobium nobile. Chin. J. New Drugs 2017, 26, 2693–700.
  • 6. Pang, C.; Zhang, X. L.; Zhang, X. L. Research progress in inhibitory epithelium-derived malignant tumors by dendrobium officinale. Pract. Oncol. J. 2020, 34, 362–7.
  • 7. He, K.; Zhang, D.; Li, X. F.; Liu, R. H.; Huang, J. L.; Liu, M. H. Inhibitory effect of dendrobium nobile lindl wall-broken powder on tumor growth of transplanted human liver cancer cell line HepG2 in nude mice. Chin. Pharm. J. 2019, 54, 1865–70.
  • 8. Zhang, X. Y.; Sun, W. B.; Yang, Z.; Liang, Y.; Zhou, W.; Tang, L. Hemostatic chemical constituents from natural medicine Toddalia asiatica root bark by LC-ESI Q-TOF MS E . Chem. Cent. J. 2017, 11, 55.
  • 9. Xia, J.; Yang, Z.; Zeng, Q. F.; Liang, Y.; Hao, X. Y.; Zhou, W. Analysis of chemical constituents in dendrobium nobile by UPLC-Q-TOF. J. Chin. Med. Mat. 2018, 41, 600–7.
  • 10. Tao, Y.; Cai, H.; Li, W. D.; Cai, B. C. Ultrafiltration coupled with high-performance liquid chromatography and quadrupole-time-of-flight mass spectrometry for screening lipase binders from different extracts of Dendrobium officinale. Anal. Bioanal. Chem. 2015, 407, 6081–93.
  • 11. Wang, X.; Wang, Z. Y.; Zheng, J. H.; Li, S. TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Medicines 2021, 19, 1–11.
  • 12. Li, S. Network pharmacology evaluation method guidance-Draft. World J. Tradit. Chin. Med. 2021, 7, 146–54.
  • 13. Luo, C. R.; Liu, J.; Liang, Y.; Sheng, Y.; He, Y. Q.; Zhou, W. Screening of anti-inflammatory alkaloids of Toddalia asiatica and the action mechanism based on molecular docking technology. J. Guizhou Med. Univ. 2021, 46, 639–46.
  • 14. Xia, J. Study on Material Basis of Antioxidant Activity of Ethyl Acetate Extract of Dendrobium Nobile, Dissertation; Guizhou Medical University: Guiyang, 2018; p 13.
  • 15. Zhou, W.; Zeng, Q. F.; Xia, J.; Wang, L.; Tao, L.; Shen, X. C. Antitumor phenanthrene constituents of dendrobium nobile. Chin. Pharm. J. 2018, 53, 1722–5.
  • 16. He, L. L.; Jiang, H.; Lan, T. H.; Qiu, Y.; Yang, K. F.; Chen, K. J.; Yao, X. S.; Yao, Z. H.; Lu, W. H. Chemical profile and potential mechanisms of Huo-Tan Chu-Shi decoction in the treatment of coronary heart disease by UHPLC-Q/TOF MS in combination with network pharmacology analysis and experimental verification. J. Chromatogr. B 2021, 1175, 122729.
  • 17. Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717.
  • 18. Tong, H. J.; Yu, M. T.; Fei, C. H.; Ji, D.; Dong, J. J.; Su, L. L.; Gu, W.; Mao, C. Q.; Li, L; Bian, Z. H.; Lu, T. L.; Hao, M.; Zeng, B. L. Bioactive constituents and the molecular mechanism of Curcumae Rhizoma in the treatment of primary dysmenorrhea based on network pharmacology and molecular docking. Phytomedicine 2021, 86, 153558.
  • 19. Tsai, A. C.; Pan, S. L.; Liao, C. H.; Guh, J. H.; Wang, S. W.; Sun, H. L.; Liu, Y. N.; Chen, C. C.; Shen, C. C.; Chang, Y. L.; Teng, C. M. Moscatilin, a bibenzyl derivative from the India orchid Dendrobrium loddigesii, suppresses tumor angiogenesis and growth in vitro and in vivo. Cancer Lett. 2010, 292, 163–70.
  • 20. Losuwannarak, N.; Maiuthed, A.; Kitkumthorn, N; Leelahavanichkul, A; Roytrakul, S.; Chanvorachote, P. Gigantol targets cancer stem cells and destabilizes tumors via the suppression of the PI3K/AKT and JAK/STAT pathways in ectopic lung cancer xenografts. Cancers 2019, 11, 2032.
  • 21. Pai, H. C.; Chang, L. H.; Peng, C. Y; Chang, Y. L; Chen, C. C; Shen, C. C.; Teng, C. M.; Pan, S. L. Moscatilin inhibits migration and metastasis of human breast cancer MDA-MB-231 cells through inhibition of Akt and Twist signaling pathway. J. Mol. Med. 2013, 91, 347–56.
  • 22. Zhao, G. Y.; Deng, B. W.; Zhang, C. Y; Cui, Y. D.; Bi, J. Y.; Zhang, G. G. New phenanthrene and 9, 10-dihydrophenanthrene derivatives from the stems of Dendrobium officinale with their cytotoxic activities. J. Nat. Med. 2018, 72, 246–51.
  • 23. Huang, J. H.; Liu, C. X.; Duan, S. N.; Lin, J.; Luo, Y. Y.; Tao, S. C.; Xing, S. P.; Zhang, X. F.; Du, H. Y.; Wang, H.; Huang, C. L.; Wei, G. Gigantol inhibits proliferation and enhances DDP-induced apoptosis in breast-cancer cells by downregulating the PI3K/Akt/mTOR signaling pathway. Life Sci. 2021, 274, 119354.
  • 24. Tewari, D.; Patni, P.; Bishayee, A.; Sah, A. N; Bishayee, A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: a novel therapeutic strategy. Semin. Cancer Biol. 2021; https://doi.org/10.1016/j.semcancer.2019.12.008.
  • 25. Tang, W.; Zhao, G. Small molecules targeting HIF-1a pathway for cancer therapy in recent years. Bioorg. Med. Chem. 2020, 28, 115235.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fafe15f-6aac-437b-9758-6ce42c045c6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.