PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wybrane aspekty współzgazowania węgla i biomasy parą wodną

Autorzy
Identyfikatory
Warianty tytułu
EN
Selected aspects of steam co-gasification of coal and biomass
Języki publikacji
PL
Abstrakty
PL
Technologie zgazowania paliw kopalnych są technologiami dojrzałymi, oferującymi możliwości produkcji gazu o szerokim zakresie zastosowań w przemyśle chemicznym, petrochemicznym i do celów produkcji energii. Adaptacja istniejących rozwiązań reaktorów zgazowania do użytkowania odnawialnych źródeł energii lub odpadów, takich jak na przykład biomasa odpadowa, napotyka szereg trudności eksploatacyjnych związanych z różnicami w składzie chemicznym paliw, a co za tym idzie również produktów procesu. Problematyczne jest też zapewnienie odpowiedniej efektywności ekonomicznej systemów zgazowania biomasy, z uwagi na trudności z zapewnieniem ciągłości wystarczająco dużych dostaw biomasy oraz jej niską wartość opałową w porównaniu z paliwami kopalnymi. Proces współzgazowania węgla i biomasy oferuje kilka ważnych korzyści w porównaniu z procesem zgazowania tych paliw oddzielnie. Umożliwia prowadzenie procesu z większą wydajnością i efektywnością ekonomiczną, z zapewnieniem ciągłych dostaw paliwa i z korzyściami płynącymi z użytkowania paliwa, traktowanego w bilansie emisji dwutlenku węgla instalacji jako zero-emisyjne. Dzięki uśrednieniu składu paliwa mniejsze są również problemy eksploatacyjne typowe dla systemów zgazowania biomasy, a związane z jej składem chemicznym. Ukierunkowanie procesu współzgazowania na produkcję gazu bogatego w wodór oferuje dodatkowe korzyści wynikające z produkcji zero-emisyjnego nośnika energii. Wnioski z przeprowadzonych dotychczas badań w skali laboratoryjnej i pilotowej w zakresie zgazowania mieszanek wsadowych węgla i biomasy są niejednoznaczne, co wynika z dużego zróżnicowania warunków prowadzenia procesu współzgazowania, w tym rodzajów stosowanych paliw, typów reaktorów i wartości parametrów eksploatacyjnych. W pracy przedstawiono wyniki wybranych prac badawczych stanowiących przyczynek do rozpoznania zjawisk zachodzących w procesie współzgazowania węgla i biomasy roślinnej parą wodną. Ocenia się, że szerokie wdrożenie technologii współzgazowania wymaga prowadzenia dalszych prac badawczych, między innymi w zakresie przygotowania wsadu, optymalizacji parametrów eksploatacyjnych procesu współzgazowania oraz oczyszczania produktu gazowego.
EN
The technologies of gasification of solid fuels are mature and enable production of gas of wide implementation range in chemical, petrochemical and power production sectors. The adaptation of the existing gasifiers to utilization of renewables and waste materials, including waste biomass, faces, however, several operating challenges resulting from the differences in the chemical composition of fuels and in the process products. Reaching the satisfactory economic efficiency of biomass gasification systems is also problematic because of the limited possibilities in securing the sufficient supplies of biomass and its relatively low calorific value when compared to fossil fuels. The co-gasification of coal and biomass brings several key advantages over the gasification of coal and biomass separately. The process is more efficient and cost-effective, with stable supplies of a fuel and benefits resulting from utilization of a zero-emission fuel. The averaged composition of a fuel blends reduces the operating problems typical of biomass gasification systems and related to biomass chemical composition. Directing the co-gasification process to hydrogen-rich gas production offers additional benefits resulting from the utilization of the zero-emission energy carrier. The conclusions of the research studies on coal and biomass co-gasification in laboratory and pilot scale published so far are ambiguous since the operating conditions, including kind of a fuel blend, type of a gasifier and values of operating parameters differ significantly. In the paper the results of selected research studies contributing to the recognition of the steam co-gasification of coal and biomass are presented. Further studies in terms of a fuel pretreatment, the optimization of the operating parameters and a raw gas treatment are required before a wide implementation of co-gasification process is feasible.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
139--144
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
autor
  • Główny Instytut Górnictwa, Zakład Oszczędności Energii i Ochrony Powietrza, Katowice
Bibliografia
  • 1. Bell D.A., Towler B.F., Fan M., Coal Gasification and its applications. Elsevier, Oxford, 1st Edition, 2011.
  • 2. Wang L., Weller C.L., Jones D.D., Hanna M.A., Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass and Bioenergy, 2008, t. 32, s. 573.
  • 3. Xu C., Donald J., Byambajav E., Ohtsuka Y., Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification. Fuel, 2010, t. 89, s. 1784.
  • 4. Engvall K., Kusar H., Sjostrom K., Pettersson L.J., Upgrading of Raw Gas from Biomass and Waste Gasification: Challenges and Opportunities. Topics in Catalysis, 2011, t. 54, s. 949.
  • 5. Zhang L., Xu C., Champagne P., Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 2010, t. 51, s. 969.
  • 6. Prins M.J., Ptasiński K.J., Janssen F., More efficient biomass gasification via torrefaction. Energy, 2006, t. 31, s. 3458.
  • 7. Chen Q., Zhou J.S., Liu B.J., Mei Q.F., Luo Z.Y., Influence of torrefaction pretreatment on biomass gasification technology. Chinese Science Bulletine, 2011, t. 56, s. 1449.
  • 8. Austermann S., Whiting K.J., Commercial Assessment. Advanced Conversion Technology (Gasification) for Biomass Projects. Jupiter Consultancy Services Ltd for Renewable East, 2007.
  • 9. McKendry, Energy production from biomass (part 3): gasification technologies. Bioresource Technology, 2002, t. 83, s. 55.
  • 10. Svoboda K., Martinec J., Pohořelý M., Baxter D., Integration of biomass drying with combustion/gasification technologies and minimization of emissions of organic compounds. Chemical Papers, 2009, t. 63, s. 15.
  • 11. Kirkels A.F., Verbong G.P.J., Biomass gasification: Still promising? A 30-year global overview. Renewable and Sustainable Energy Reviews, 2011, t. 15, s. 471.
  • 12. Iluk T., Sobolewski A., Kotowicz J., Bartela Ł., Biomass drying integrated with gasification plant of 1.5 MW power output. Materiały Konferencji "Power Engineering and Environment. Modern Energy Technologies and Renewable Energy Resources 2011", Ostrava, Czechy, 29-31.08.2011 r., s. 34.
  • 13. Kotowicz J., Sobolewski A., Iluk T., Energetic analysis of a system integrated with biomass gasification. Energy, 2013, t. 52, s. 265.
  • 14. DOE NETL Department of Energy, National Energy Technology Laboratory. Gasification Technology Database, 2010.
  • 15. http://www.netl.doe.gov/technologies/coalpower/gasification/worlddatabase/summary.html
  • 16. Couhert C., Salvador S., Commandre J.M., Impact of torrefaction on syngas production from wood. Fuel, 2009, t. 88, s. 2286.
  • 17. Brar J.S., Singh K., Wang J., Kumar S., Co-gasification of coal and biomass: A review. International Journal of Forestry Research, 2012, t. 2012, Article ID 363058, 10 pages, 2012. doi:10.1155/2012/363058.
  • 18. Collot A.G., Zhuo Y., Dugwell D.R., Kandiyoti R., Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidized bed reactors. Fuel, 1999, t. 78, s. 667.
  • 19. Sjöstrom K., Chen G., Yu Q., Brage C., Rosen C., Promoted reactivity of char in co-gasification of biomass and coal: synergies in the thermochemical process. Fuel, 1999, t. 78, s. 1189.
  • 20. Pinto F., Franco C., Andre R. Tavares C., Dias M., Gulyurtlu I., Cabrita I., Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system. Fuel, 2003, t. 82, s. 1967.
  • 21. André R.N., Pinto F., Franco C., Dias M., Gulyurtlu I., Matos M.A.A., Cabrita I., Fluidised bed co-gasification of coal and olive oil industry wastes. Fuel, 2005, t. 84, s. 1635.
  • 22. Lapuerta M., Hernandez J.J., Pazo A., Lopez J., Gasification and co-gasification of biomass wastes: effect of the biomass origin and the gasifier operating conditions. Fuel Processing Technology, 2008, t. 89, s. 828.
  • 23. Fermoso J., Arias B., Plaza M.G., Pevida C., Rubiera F., Pis J.J., García-Peña F., Casero P., High-pressure co-gasification of coal with biomass and petroleum coke. Fuel Processing Technology, 2009, t. 90, s. 926.
  • 24. Fermoso J., Arias B., Gil M.V., Plaza M.G., Pevida C., Pis J.J., Rubiera F., Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H2-rich gas production. Bioresourse Technology, 2010, t. 101, s. 3230.
  • 25. Li K., Zhang R., Bi J., Experimental study on syngas production by co-gasification of coal and biomass in a fluidized bed. International Journal of Hydrogen Energy, 2010, t. 35, s. 2722.
  • 26. Aigner A., Pfeifer C., Hofbauer H., Co-gasification of coal and wood in a dual fluidized bed gasifier. Fuel, 2011, t. 90, s. 2404.
  • 27. Miccio F., Ruoppolo G., Kalisz S., Andersen L., Morgan T.J., Baxter D., Combined gasification of coal and biomass in internal circulating fluidized bed. Fuel Processing Technology, 2012, t. 95, s. 45.
  • 28. Howaniec N., Smoliński A., Stańczyk K., Pichlak M., Steam co-gasification of coal and biomass derived chars with synergy effect as an innovative way of hydrogen-rich gas production. International Journal of Hydrogen Energy, 2011, t. 36, s. 14455.
  • 29. Prins M.J., Ptasinski K.J., Janssen F., From coal to biomass gasification: Comparison of thermodynamic efficiency. Energy, 2007, t. 32, s. 1248.
  • 30. Fermoso J., Gil M.V., Pevida C., Pis J.J., Rubiera F., Kinetic models comparison for non-isothermal steam gasification of coal–biomass blend chars. Chemical Engineering Journal, 2010, t. 161, s. 276.
  • 31. Karaca F., Bolat E., Coprocessing of Turkish lignite with a cellulosic waste material 2. The effect of co-processing on liquefaction yields at different reaction pressures and sawdust/lignite ratios. Fuel Processing Technology, 2002, t. 75, s. 109.
  • 32. Mc Ilveen-Wright D.R., Pinto F., Armesto L., Caballero M.A., Aznar M.P., Cabanillas A., Acomparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste. Fuel Processing Technology, 2006, t. 87, s. 793.
  • 33. Brown R.C., Liua O., Norton G., Catalytic effects observed during the co-gasification of coal and switchgrass. Biomass and Bioenergy, 2000, t. 18, s. 499.
  • 34. Afif E., Azadi P., Farnood R., Catalytic hydrothermal gasification of activated sludge. Applied Catalysis B, Environmental, 2011, t. 105, s. 136.
  • 35. Zhu W., Song W., Lin W., Catalytic gasification of char from co-pyrolysis of coal and biomass. Fuel Processing Technology, 2008, t. 89, s. 890.
  • 36. Pinto F., Franco C., Lopes H., Andre R.N., Gulyurtlu I., Cabrita I., Effect of used edible oils in coal fluidised bed gasification. Fuel, 2005, t. 84, s. 2236.
  • 37. Howaniec N., Smoliński A., Steam co-gasification of coal and biomass – Synergy in reactivity of fuel blends chars. International Journal of Hydrogen Energy, 2013, t. 36, s. 16152.
  • 38. Howaniec N., Smoliński A., Influence of fuel blend ash components on steam co-gasification of coal and biomass - chemometric study. Energy, 2014, t. 78, s. 814.
  • 39. Howaniec N., Smoliński A., Effect of fuel blend composition on the efficiency of hydrogen-rich gas production in co-gasification of coal and biomass. Fuel, 2014, t. 128, s. 442.
  • 40. Franco C., Pinto F., Gulyurtlu I., Cabrita I., The study of reactions influencing the biomass steam gasification process. Fuel, 2003, t. 82, s. 835.
  • 41. Kim Y.J., Lee S.H., Kim S.D., Coal gasification characteristics in a downer reactor. Fuel, 2001, t. 80, s. 1915.
  • 42. Pinto F., Franco C., Andre R.N., Miranda M., Gulyurtlu I., Cabrita I., Co-gasification study of biomass mixed with plastic wastes. Fuel, 2002, t. 81, s. 291.
  • 43. Gil J., Aznar M.P., Caballero M.A., Francés E., Corella J., Biomass Gasification in Fluidized Bed at Pilot Scale with Steam-Oxygen Mixtures. Product Distribution for Very Different Operating Conditions. Energy and Fuels, 1997, t. 11(6), s. 1109.
  • 44. Devi L., Craje M., Thüne P., Ptasinski K.J., Janssen F.J.J.G. Olivine as tar removal catalyst for biomass gasifiers: catalyst characterization. Applied Catalysis A, 2005, t. 295, s. 68.
  • 45. Devi L., Ptasinski K.J., Janssen F.J.J.G., Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model tar. Fuel Processing Technology, 2004, t. 86, s. 707.
  • 46. Czaplicki A., Zgazowanie słomy rzepakowej i węgla w reaktorze z cyrkulującym złożem fluidalnym. Karbo, 2011, t. 4, s. 288.
  • 47. Sue-A-Quan T.A., Watkinson A.P., Gaikwad R.P., Lim C.J., Ferris B.R., Steam gasification in a pressurized spouted bed reactor. Fuel Processing Technology, 1991, t. 27, s. 67.
  • 48. Atimtay A.T., Harrison D.P., Desulfurization of Hot Coal Gas. Springer, Berlin, 1998.
  • 49. Griffin T.P., Howard J.B., Peters W.A., Pressure and temperature effects in bituminous coal pyrolysis: experimental observations and a transient lumped parameter model. Fuel, 1994, t. 73, s. 591.
  • 50. Miura K., Hashimoto K., Silveston P.L., Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity. Fuel, 1989, t. 68, s. 1461.
  • 51. Saxena S.C., Devolatilization and combustion characteristics of coal particles. Progress in Energy and Combustion Science, 1990, t. 16, s. 55.
  • 52. Chen H., Luo Z., Yang H., Ju F., Zhang S., Pressurized pyrolysis and gasification of Chinese typical coal samples. Energy and Fuels, 2008, t. 22, s. 1136.
  • 53. Wu H., Bryant G., Benfell K., Wall T., An experimental study on the effect of system pressure on char structure of an Australian bituminous coal. Energy and Fuels, 2000, t. 14, s. 282.
  • 54. Wall T.F., Liu G.-S., Wu H.-W., Roberts D.G., Benfell K.E., Gupta S., Lucas J.A., Harris D.J., The effects of pressure on coal reactions during pulverized coal combustion and gasification. Progress in Energy and Combustion Science, 2002, t. 28, s. 405.
  • 55. Fung D.P.C., Kim S.D., Laboratory gasification study of Canadian coals: 2. Chemical reactivity and coal rank. Fuel, 1983, t. 62, s. 1337.
  • 56. Takarada T., Tamai Y., Tomita A., Reactivities of 34 coals under steam gasification. Fuel, 1985, t. 64, s. 1438.
  • 57. Kumabe K., Hanaoka T., Fujimoto S., Minowa T., Sakanishi K., Co-gasification of woody biomass and coal with air and steam. Fuel, 2007, t. 86, s. 684.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fad18fd-c671-4350-9afc-a5dd06ee24d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.