PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distance protection analysis applied for distribution system with distributed generation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza zabezpieczeń uwzględniających funkcje odległości w rozproszonych systemach wytwarzania energii
Języki publikacji
EN
Abstrakty
EN
In power systems, the over-current protection scheme and, optionally with directional function, and distance function are the main protection used, principally, where the power flow is on both sides as in distribution system with distributed generation (DG), for example. However, with the increasing of DG penetration in the distribution system, these protections can not be secure and impacts in the coordination of the protection are caused due to the power flow is on both sides. Therefore, new types of protection as distance protection are candidates to solve the coordination problem in the distribution system with DG. In this paper, is proposed an application of the distance protection in the distribution system with DG, and several cases of faults and the impacts on the distance protection are evaluated in presence of DG. In the simulation and analysis of faults were varied the fault inception angle, fault type, fault resistance, and fault location. The correct and bad trips are analyzed to evaluate the distance relay performance. The distance relay used in the distribution system with DG had good performance in all simulation cases. Besides, the better performance of the distance protection proves which may be used in distribution systems with DG.
PL
W systemach energetycznych zabezpieczenie przed przeciążeniem prądowym (opcjonalnie wraz z funkcją kierunku i odległości) jest główną metoda zabezpieczenia, szczególnie gdy moc może być przekazywana w dwóch kierunkach. W artykule zaproponowano nowy typ zabezpieczenia uwzględniający funkcje odległości. Uwzględniono też możliwość wykrywania błędów i możliwość określania ich położenia.
Rocznik
Strony
13--17
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Federal University of Campina Grande (UFCG), Department of Electrical Engineering, Bodocongó, 58.429- 900, Campina Grande - PB - Brazil
  • Potiguar University (UnP), Department of Electrical Engineer- ing, Lagoa Nova, 59.056-000, Natal - RN - Brazil
autor
  • Federal University of Camp- ina Grande (UFCG), Department of Electrical Engineering, Electrical Engineering and Informatics Centre, Bodocongó, 58.429-900, Campina Grande - PB - Brazil
autor
  • Federal University of Rio Grande do Norte (UFRN), School of Science and Technology, Lagoa Nova, 59.078- 970, Natal - RN - Brazil
autor
  • Federal University of Camp- ina Grande (UFCG), Department of Electrical Engineering, Electrical Engineering and Informatics Centre, Bodocongó, 58.429-900, Campina Grande - PB - Brazil
Bibliografia
  • [1] S. M. Brahma, “Fault location in power distribution system with penetration of distributed generation,” IEEE Transactions on Power Delivery, vol. 26, no. 3, pp. 1545–1553, Jul. 2011.
  • [2] R. Chabanloo, H. Abyaneh, A. Agheli, and H. Rastegar, “Overcurrent relays coordination considering transient behaviour of fault current limiter and distributed generation in distribution power network,” IET Generation Transmission and Distribution, vol. 5, no. 9, pp. 903–911, Nov. 2011.
  • [3] P. Anderson, Power System Protection, ser. IEEE Press Power Engineering Series. McGraw-Hill, 1999. [Online]. Available: http://books.google.com.br/books?id=eP9qQgAACAAJ
  • [4] F. C. L. Trindade, K. V. do Nascimento, and J. C. M. Vieira, “Investigation on voltage sags caused by dg anti-islanding protection,” IEEE Transactions on Power Delivery, vol. 28, no. 2, pp. 972–980, Apr. 2013.
  • [5] J. Gomez, J. Vaschetti, C. Coyos, and C. Ibarlucea, “Distributed generation: impact on protections and power quality,” IEEE (Revista IEEE America Latina) Latin America Transactions, vol. 11, no. 1, pp. 460–465, Feb. 2013.
  • [6] P. D. Lezhniuk, I. O. Hunko, S. V. Kravchuk, P. Komada, K. Gromaszek, A. Mussabekova, N. Askarova, and A. Arman, “The influence of distributed power sources on active power loss in the microgrid,” Przeglad Elektrotechniczny, vol. 93, no. 03, pp. 107–112, March 2017.
  • [7] J. Gomez and M. Morcos, “Coordination of voltage sag and overcurrent protection in dg systems,” IEEE Transactions on Power Delivery, vol. 20, no. 1, pp. 214–218, Jan. 2005.
  • [8] F. Viawan and M. Reza, “The impact of synchronous distributed generation on voltage dip and overcurrent protection coordination,” in Future Power Systems, 2005 International Conference on, Nov 2005, pp. 6 pp.–6.
  • [9] S. Brahma, “Fault location in power distribution system with penetration of distributed generation,” Power Delivery, IEEE Transactions on, vol. 26, no. 3, pp. 1545–1553, July 2011.
  • [10] J. Silva, H. Funmilayo, and K. Butler-Purry, “Impact of distributed generation on the ieee 34 node radial test feeder with overcurrent protection,” in Power Symposium, 2007. NAPS ’07. 39th North American, Sept 2007, pp. 49–57.
  • [11] R. Chabanloo, H. Abyaneh, A. Agheli, and H. Rastegar, “Overcurrent relays coordination considering transient behaviour of fault current limiter and distributed generation in distribution power network,” Generation, Transmission Distribution, IET, vol. 5, no. 9, pp. 903–911, September 2011.
  • [12] W. Elmore, Protective Relaying: Theory and Applications, ser. No Series. Marcel Dekker, 2004. [Online]. Available: http://books.google.com.br/books?id=1Jqhpd-rhoUC
  • [13] G. Ziegler, Numerical distance protection : principles and application / Gerhard Ziegler ; [editor, Siemens AG]. Munich : Publicis MCD, 1999, includes bibliographical references (p. 306-311) and index.
  • [14] REL300 Relay System, V2.71 ed., ABB Power T& D Company Inc., 4 1996.
  • [15] D30 Line Distance Protection System Instruction Manual, GE Energy, 4 2012.
  • [16] SIPROTEC Distance Protection 7SA522, Siemens AG, 2 2011.
  • [17] C. Mason, The art and science of protective relaying, ser. General Electric series. Wiley, 1956. [Online]. Available: http://books.google.com.br/books?id=jedSAAAAMAAJ
  • [18] J. Suonan, J. Zhang, Z. Jiao, L. Yang, and G. Song, “Distance protection for hvdc transmission lines considering frequencydependent parameters,” Power Delivery, IEEE Transactions on, vol. 28, no. 2, pp. 723–732, April 2013.
  • [19] L. He, C.-C. Liu, A. Pitto, and D. Cirio, “Distance protection of ac grid with hvdc-connected offshore wind generators,” Power Delivery, IEEE Transactions on, vol. 29, no. 2, pp. 493–501, April 2014.
  • [20] F. Albasri, T. Sidhu, and R. Varma, “Performance comparison of distance protection schemes for shunt-facts compen- sated transmission lines,” Power Delivery, IEEE Transactions on, vol. 22, no. 4, pp. 2116–2125, Oct 2007.
  • [21] Z. Xu, S. Huang, L. Ran, J. Liu, Y. Qin, Q. Yang, and J. He, “A distance protection relay for a 1000-kv uhv transmission line,” Power Delivery, IEEE Transactions on, vol. 23, no. 4, pp. 1795– 1804, Oct 2008.
  • [22] A. Hooshyar, M. Azzouz, and E. El-Saadany, “Distance protection of lines connected to induction generator-based wind farms during balanced faults,” Sustainable Energy, IEEE Transactions on, vol. 5, no. 4, pp. 1193–1203, Oct 2014.
  • [23] I. Chilvers, N. Jenkins, and C. P, “Distance relaying of 11 kv circuits to increase the installed capacity of distributed generation,” Generation, Transmission and Distribution, IEE Proceedings-, vol. 152, no. 1, pp. 40–46, Jan 2005.
  • [24] A. Sinclair, D. Finney, D. Martin, and P. Sharma, “Distance protection in distribution systems: How it assists with integrating distributed resources,” in Rural Electric Power Conference (REPC), 2013 IEEE, April 2013, pp. B3–1–B3–12.
  • [25] E. O. S. III and J. Roberts, ÂS¸ Distance Relay Element Design, ÂTˇ proceedings of the 47th Annual Texas A&M Conference for Protective Relay Engineers, College Station, TX, Apr. 1993. [Online]. Available: http://www.selinc.com/techpprs.htm
  • [26] D. G. Hart, D. Novosel, and R. A. Smith, “Modified cosine filters,” November 2000. [Online]. Available: http: //www.freepatentsonline.com/6154687.html
  • [27] B. Kasztenny and D. Finney, “Fundamentals of distance protection,” in Protective Relay Engineers, 2008 61st Annual Conference for, april 2008, pp. 1 –34.
  • [28] J. Roberts, A. Guzman, and E. O. Schweitzer, Z=V/I Does Not Make a Distance Relay. 20th Annual Western Protective Relay Conference, Spokane, WA, Oct. 1993.
  • [29] E. O. Schweitzer III, Distance relay using a polarizing voltage, August 1992, no. 5140492. [Online]. Available: http://www.freepatentsonline.com/5140492.html
  • [30] Hydro-Québec, SimPowerSystemT M , User’s Guide (Second Generation. MathWorks disponível em: <http://www.mathworks.com>, 2013.
  • [31] D. Salles, W. Freitas, J. C. M. Vieira, and W. Xu, “Nondetection index of anti-islanding passive protection of synchronous distributed generators,” IEEE Transaction on Power Delivery, vol. 27, no. 3, pp. 1509 –1518, Jul. 2012.
  • [32] P. Kundur, Power System Stability and Control, 1st ed. McGraw-Hill Inc, 1994.
  • [33] IEEE-Standard, “Institute of electrial and electronics engineers standard: Ieee recommended practice for excitation system models for power system stability studies,” Standar Board, 2005.
  • [34] N. Jenkins, R. Allan, P. Crossley, D. Kirschen, and G. Strbac, Embedded Generation, first edition ed. London: IEEE. (IET Power and Energy Series 31), 2000.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6facdd41-7e78-402e-907a-de741bfb93d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.