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Abstract
Types and Operations

A revision of the basic concepts of type, function (called
here operation), and relation is proposed. A simple generic
method is presented for constructing operations and types as
concrete finite structures parameterized by natural numbers.
The method gives rise to build inductively so called Universe
intended to contain all what can be effectively constructed at
least in the sense assumed in the paper. It is argued that
the Universe is not yet another formal theory but may be
considered as a grounding for some formal theories.

Keywords: types, semantics, foundations

Streszczenie

Typy i Operacje

Zaproponowana zostala rewizja podstawowych pojeé¢ typu
i funkcji (nazywanej tutaj operacja). Typy, obiekty tych
typéw oraz operacje sa konstruowane za pomoca prostej
i uniwersalnej metody jako skonczone struktury paramet-
ryzowane liczbami naturalnymi. Metoda ta pozwala na
budowanie tzw. Uniwersum, ktére, w zamierzeniu, ma
zawiera¢ wszystko co jest efektywnie konstruowalne przynaj-
mniej w sensie, jaki jest przyjety w tej pracy. Przedstawione
sa argumenty, ze Uniwersum nie jest jeszcze jedna formalna
teoria, lecz moze stuzy¢ jako ugruntowanie dla pewnych
formalnych teorii.

Stowa kluczowe: typy, semantyka, podstawy



1 Introduction

It is a continuation of the work of Professor Andrzej Grzegorczyk [16]
(who was inspired by the System T of Kurt Godel [12]) concerning re-
cursive objects of all finite types.

The phrase effectively constructed objects may be seen as a general-
ization of the notion of recursive objects. Objects can be represented as
finite (usually parameterized) structures. Universe is understood here as
a collection of all generic constructible objects.

In the Universe, constructability is understood literally, i.e. it is
not definability, like general recursive functions (according to Godel-
Herbrand) that are defined by equations in Peano Arithmetic along
with proofs that the functions are global, that is, defined for all their
arguments. Objects are not regarded as terms in lambda calculus or in
combinatory logic.

Most theories formalizing the notion of effective constructability (ear-
lier it was computability) are based on the lambda abstraction introduces
by Alonzo Church that in principle was to capture the notion of func-
tion and computation. Having a term with a free variable, it is easy to
make it a function by applying lambda operator. Unlimited application
of lambda abstraction results in contradiction (is meaningless), i.e. some
terms cannot be reduced to the normal form. This very reduction is re-
garded as computation. Introduction of types and restricting lambda
abstraction only to typed variables results in a very simple type theory.

Inspired by System T, Jean-Yves Girard created system F [11], [10];
independently also by John C. Reynolds [31]. Since System F uses lambda
and Lambda abstraction (variables run over types as objects), the terms
are not explicit constructions. System F is very smart in its form, how-
ever it is still a formal theory with term reduction as computation; it
has strong normalization property.

Per Martin-Lo6f Type Theory (ML TT for short) [28] was intended
to be an alternative foundation of Mathematics based on constructivism
asserting that to construct a mathematical object is the same as to prove
that it exists. This is very close to the Curry-Howard correspondence
propositions as types. In ML TT, there are types for equality, and a



cumulative hierarchy of universes. However, ML TT is a formal theory,
and it uses lambda abstraction. Searching for a grounding (concrete
semantics) for ML TT by the Author long time ago, was the primary
inspiration for the Universe presented in this work.

Calculus of Inductive Constructions (ColC), created by Thierry Co-
quand and Gérard Huet [5] and [6], is a lambda calculus with a rich type
system like the System F. It was designed for Coq Proof Assistant [4],
and can serve as both a typed programming language and as construc-
tive foundation for Mathematics. Agda is a dependently typed functional
programming language based also on ML TT; it is also a proof assistant,
see at www wiki.portal.chalmers.se/agda/

ML TT, System F, and ColC are based on lambda and Lambda
abstraction, so that in their syntactic form they correspond to the term
rewriting systems.

In this work lambda and Lambda abstractions are challenged. It is
an attempt to show that the same (as in System F), and perhaps more,
can be achieved by explicit and concrete constructions, even though
these constructions are not so concise and smart as the corresponding
terms in System T. The proposed method relates rather to the approach
where explicit constructors are used. In this sense, it continues the idea
of Grzegorczyk’s combinators [16], and in some sense also combinators
in Haskell B. Curry [8] combinatory logic. Note that combinatory logic
is the theoretical basis for functional programming language Haskell.

Although the whole Informatics can be reduced to processing of
streams of bytes (it is still a common view), in programming more and
more sophisticated data structures are used that cannot be identified
with syntactical operations on strings of signs (terms) according to fixed
simple (term rewriting) rules. It seems that lambda calculus is a way to
only roughly describe such sophisticated structures. From the construc-
tivist point of view, changing of all occurrences of a free variable (in a
term) with another term of the same type as the variable, is not obvious;
something of this intuition was captured by the Girard’s linear logic. Ar-
bitrary application of Lambda abstraction and substitution may result
with terms that have no computational meaning, i.e. cannot be reduced
to the normal form.



Effective construction of an object cannot use actual infinity. If it is
an inductive construction, then the induction parameter must be shown
explicitly in the construction. For any fixed value of the parameter the
construction must be a finite structure. The Universe presented in this
paper is supposed to consist only of such objects. Objects are not identi-
fied with terms whereas computations are not term rewritings. Although,
in computations all can be reduced to the primitive types, higher order
types and their objects correspond in programming to sophisticated data
structures and their instances.

Two primitive types are considered: natural numbers and Contin-
uum. It seems that the Continuum as a primitive type is novel in Infor-
matics. The inspiration comes from quite recent (November 2013) Ho-
motopy Type Theory: Univalent Foundations of Mathematics (HoTT)
[39]; a formal theory based on ML TT and ColC. HoTT aspires to be
another foundation for Mathematics alternative to set theory (ZFC),
by encoding general mathematical notions in terms of homotopy types.
According to Vladimir Voevodsky [40](one of the creators of HoTT) the
univalent foundations are adequate for human reasoning as well as for
computer verification of this reasoning. Generally, any such foundations
should consist of three components. The first component is a formal de-
duction system (a language and rules); for HoTT it is CoIC. The second
component is a structure that provides a meaning to the sentences of
this language in terms of mental objects intuitively comprehensible to
humans; for HoTT it is interpretation of sentences of ColC as univalent
models related to homotopy types. The third component is a way that
enables humans to encode mathematical ideas in terms of the objects
directly associated with the language.

The above phrases: mental objects and mathematical ideas are not
clear. Actually, in the univalent foundations, these mental objects (as
homotopy types) are yet another formal theory. It seems that the main
problem here is the lack of a grounding (concrete semantics) of these
mental objects and mathematical ideas. The concept of equality (rela-
tion) plays extremely important role in ML TT and HoTT. However, a
formal axiomatic description of the notion of equality of two object of
the same type, and then higher order equality is not sufficient to com-



prehend the essence of the notion of equality and in general of the notion
of relation. The homotopy origins of HoTT are interesting and will be
discussed in the Section 6, whereas a grounding for the notion of relation
is proposed in Section 9.

The proposed Universe is not yet another formal theory of types.
It is intended to be a grounding for some formal theories as well as a
generic method for constructing objects corresponding to data structures
in programming.

It seems that the same idea was investigated at least since the begin-
ning of the XX century. However, it was done in formal ways by Church
lambda calculus, Curry combinatory logic, Godel System T, Grzegor-
czyk System, Martin Lof T'T, Girard System F, and Coquand ColC to
mention only the most prominent works. The Universe is an attempt to
understand these formal theories. Hence, once it is presented, it should
be grasped as simple and obvious.

Universe is strongly related to computable functionals (Stephen C.
Kleene [23][24][25], Georg Kreisler [26], Grzegorczyk [13] and [14], as
well as to Richard Platek & Dana Scott PCF** [35, 34]) and to Scott
Domain [36].

2 Foundations

This section and the next one may be seen as naive because there are
no technicalities here. However, the aim is to present the most primitive
notions as simple as possible. These notions (as basic elements for con-
structions) are types, objects, and operations that process input objects
into output objects. Operation is a synonym for function.

Object a of type A is denoted by a : A. The type of operation is
determined by the type of its input (say A) and the type of its output
(say B), and is denoted by A — B.

Primitive type may be interpreted as data link (communications
channel) whereas object of that type as a signal transmitted in this
channel. The interpretation may be extended for complex types.

Simple operation has one input and one output, however in general,
operation may have multiple inputs as well as multiple outputs, see Fig.



1. The type of operation g having multiple inputs and multiple outputs
is denoted by ¢ : (A1; Ag;...; Ax) — (B1; Be;...; By)

Operation f : A — B may be applied to its argument, i.e. input
object a : A. The output of this application is denoted by f(a). For
operations with multiple input, application may be partial, i.e. only for
some of the inputs (say a; and a;). Then it is denoted by g(a;;as; *).
Application is amorphous, however, if the type of the operation and the
types of arguments are fixed, then application may be considered as an
operation. There are no variables in our approach. In lambda calculus
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Figure 1: On the left, graphical schema of operation; on the right, com-
position of two operations.

variables serve to denote inputs. In combinatory logic any combinator
has exactly one input. Operation having many inputs can be (equiva-
lently in some sense) transformed (by currying) into operation having
one input. It will turn out in Section 4.3 that currying is an operation.

Composition of two operations consists in joining an output of one
operation to an input of another operation. The type of the output and
the type of the input must be the same, see Fig. 1. Composition is
amorphous, however if the operation types are fixed, then composition
may be considered as an operation.

The Universe will be developed inductively (actually, by transfinite



induction) starting with primitive constructors, destructors and primi-
tive types. At each inductive level, new primitives will be added. The
primitives are natural consequences of the constructions methods from
the previous levels and give rise to new methods. Each level is potentially
infinite. The Universe is never ending story. Once construction methods
are completed for one level, it gives rise to the construction of the next
level and new methods. There are always next levels that contribute
essential and qualitatively new constructions to the Universe.

This constitutes a bit intuitive and informal foundation for the Uni-
verse. In the next sections the idea is developed fully and precisely.

3 Level zero

Level 0 of the Universe consists of primitive constructors of types, prim-
itive types, and related primitive operations. On the level 1, the types
form level 0 will be treated as objects, analogously for higher levels.
The levels of the Universe correspond to an infinite well-founded typing
hierarchy of sorts in ColIC [4].

3.1 Type constructors

Keeping in mind the interpretation of types as telecommunication links,
there are three basic type constructors. Let A and B denote types.

e x product of two types A x B; as one double link consisting of A
and B. Signals (objects) are transmitted in A x B simultaneously.

e + disjoin union A + B; two links are joined into one single link.
Signal (object) transmitted in this link is preceded by a label in-
dicating the type of this object.

e — arrow, operations type A — B; A is input type, whereas B is
output type.

These three basic constructors are independent of primitive types.
On the level 1 these constructors will be considered as operations on
types, and new type constructors will be introduced.
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Product and disjoint union are natural and their nesting, like (A X
B)+(C x D), has obvious interpretation. The meaning of operation type
is a bit more harder to grasp, especially if input is again an operation
type, like (A — B) — C. The problem is how to interpret operation as
an object. Actually this problem can be reduced to grasping properly
what are input types and output types in an operation. Fig. 2 may help.
Input is interpreted as socket board where each socket corresponds to a
link that is a single type. The same for the output.

IN @ 3t IN @ ‘+|
ouTt @ ou7© 0oa

Figure 2: Another pictorial presentation of operations: on the left, there
is operation with input socket board consisting of A x B and one output
board consisting of type C; on the right, output socket board consists
of two independent types B and C.

Type of operation is again a socket board consisting of two parts.
The upper part is a socket board as the input type. The bottom part is
a socket board as the output type, see Fig. 3.

Putting an object a : A into a socket of type A is interpreted as a
transmission of the object via this socket. For an operation f: A — C
putting an object a : A into the input socket of type A means the
application f(a). So that the object f(a) will appear at the output socket
of type B.

For operation f : (B; A) — C the application f(b,a) : C is just an
object at the output socket C, see Fig. 4. However, f(b,x) is still an
operation of type A — C.

Once this is clear, it is also easy to grasp what does it mean to apply
operation F': (A — B) — C to an input object h : A — B. The input
socket board of the operation F is of type A — B. Putting object h
into the input socket board of F' means connecting all the sockets of
input and output of h to the input board of the operation F', see Fig.



11

©)
Qlle

®
ouT @ out @
®

— " [OO
@ ] ouT @

®
out @

INEl
[ ¢ |

Figure 3: Operations and their types: operations are presented in the
bottom row whereas their types in the top row.

5, where input socket of h (of type A) is connected to the input socket
(of type A) of the input board of F', whereas output socket of h (of type
B) is connected to the output socket (of type B) of the input board of
operation F. Once it is done, the result of the application F'(h) is at
the socket C' of the output board of the operation F'. This is the crucial
point of our approach. Types are interpreted as sockets whereas input
types and output types as socket boards. Operation type is interpreted
as a complex board consisting of input board and output board. This
gives rise to interpret types as objects at the level 1 of the Universe.

Constructors of objects corresponding to product, disjoin union, and
arrow (operation type) are as follows. Let a: A and b: B.

e for product: joina p is an operations of type (A4;B) — (A x B)
such that joina p(a;b) is an object of type A x B denoted as a
pair by (a,b).

e for disjoin union: plusﬁ,B : A — (A+ B) and plusiB : B —
(A4 B). For a : A and b : B, plusiB(a) and plusﬁ’B(b) are
objects of type A + B.
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Figure 4: An operation applied to objects.

e for arrow: for any a : A there is the constant operation of type B —
A, such that for any b : B, it returns a as its output. More generally,
constap: A — (B — A), such that operation consty p(a): B —
A returns always a as its output.

b

It is important that the equality symbol ”=" in not used even for de-
scription. The reason is that the equality as relation will be constructed
in Section 9.

Destructors for product, disjoin union, and arrow.

e projap: (AxB) — (A; B). For any (a, b) of type Ax B, projection
returns two output objects denoted by projf} g((a,b)) : A and
projiB((a, b)) : B. Composition of join g and (projﬁjB; projiB)
gives two identity operations: id4 : A — A and idp : B — B, that
return the input object as the output. Although identity operation
(say for type A) may be identified with a link of type A, it is useful
in constructions.

e getap : (A+ B) = (A; B). For an input object of type A + B,
it returns only one output: either getﬁy B or getﬁj p- Although this
operation has two outputs, once it is applied, only one output has
object; it is determined by the input object.

o applya—p 4. Application as operation indexed by types A i B is
of type ((A — B); A) — B. For any input objects f : A — B and
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Figure 5: Application of operation F': (A — B) — C to object h : A —
B.

a : A, it returns as the output applya— g a(f;a), i.e. the same as
the amorphous application f(a) (being also a destructor for arrow
type). Applications as operations are used in constructions.

Operation applys—p,a : ((A — B); A) — B is interpreted as a spe-
cific board consisting of linked sockets, see Fig. 6. Generally, operation
apply may be more complex, i.e. may have multiple inputs for example,
it maybe of type (((C;A) — B),C) — (A — B), see Fig. 6.

3.2 Composition as operation

Composing two operations f : A — B and g : B — C means to link the
output sockets of f to the input sockets of g. This is done for two fixed
operations. If these operations are not fixed, the composition becomes
an operation, i.e. composea pc : ((A— B);(B = C)) - (A — C) and
is realized as a specific board with appropriate links between sockets,
see Fig. 7.

The simplest composition is of the form: composes aa : (A —
A);(A— A)) — (A — A); it will be used to construct iteration.

Like application also composition has its more complex variants de-
pending on the numbers of inputs and outputs of the composed opera-
tions. An example with two inputs is shown in Fig. 7.
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Figure 6: Applications as operations: simple applya~pa : ((A —
B); A) — B, and complex apply(((c;4)—B),c)

For two outputs it maybe of the following form. compose s (p.py,B,c :
(A= (B;D)); (B — () = (A= (C; D).

3.3 Operation Copy

Object is given by its construction. Repeating this construction means
to copy this object. For already constructed object a, Copy(a) returns
two outputs, the first one, denoted by Copy!(a), is the original object a,
whereas the second output, denoted by Copy?(a), is a copy of a. Copy
is amorphous, however in constructions it may be used as operation
Copya : A — (A; A). Tt is a specific operation determined by what has
already been constructed.

Note that once an object was used in a construction, it is an inherent
part of this construction, so that it can not be used again in another
construction. Operation Copy allows to produce copies that may be
used in another constructions. This restriction concerns also primitive
operations and types. In this paper we abuse somewhat the notation,
and use the same symbols (occurring more than once) that in fact are
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Figure 7: Composition composeapc : (A — B);(B — C)) —
(A — (), and complex composition composes g (p.p),c : (A —
B); ((B; D) = C))) = ((4; D) = C)

different copies of the same type, primitive operation, or object. It is
confusing especially if multiple copies of the same type are in input or
in output. To distinguish these types the following convention is used.
If A denotes a type, then its copies are denoted by A’, A”, and so on.
Also copies of object a will be denoted by a’, a”, a’”’, and so on. Actually
types from level 0 are considered also as objects on level 1.

Although what was presented above is simple and obvious, it con-
stitutes the strictly finitary basis. Next important step is to introduce
primitive types.

4  Natural numbers

Copy and add to the previous result is the primeval intuition of natural
numbers.

Telecommunication interpretation of this intuition is as follows. Copy
the unit signal from the transmission channel, and the result put in
the channel at the beginning. Repeating this means natural numbers.
Starting with a single unit signal (denoting number 1), the consecutive
repetitions give next natural numbers, i.e. the first repetition results in
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two unit signals, the second one in three signals, and so on. This very
repeating is the successor operation denoted by Swucc.

If the intuition is applied to an operation of type A — A (here A
is an arbitrary type)) instead of the unit signal, then it is exactly the
approach to define natural numbers proposed by Church in his lambda
calculus and also the one used in System F. Natural number (say n)
is identified with the amorphous iteration, i.e. it can be applied to any
operation (with input and output of the same type), and returns n-times
composition of this operation. Let us accept the first interpretation.

f:A>A} ——————1 —

IN @ IN @ I'N @
ouTt @ out @ ourt @

copy copy copy
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ouTt ® ouTt ® ouTt ® ouT ® oUT @ OUT ®
T i I I i T
Il h 4 v v b 4 ﬁ
IN IN N TN

“o|[-0] | |"[Le] [0 o| "0

oul @4 ou-r@j ouT @g OUTQT ouq @g oUT®:T

1 1 1
compose compose compose
out | ouT ouT
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———— | ¥
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Figure 8: Operation Iter(4;x*) applied to f

Then the primitive operations successor Succ and predecessor Pred have
natural interpretation. Succ consists in coping the original unit signal
and join the result to what has already been done. Pred is interpreted
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as removing from the channel the first unit signal, if the channel is not
empty.
Denote the type of natural numbers by N.

4.1 Iteration

The type of natural numbers is crucial to construct sophisticated objects.

Iteration (for a fixed type A) is the operation Itery : (N;(A —
A)) - (A — A) that for a given n : N and operation f : A — A,
returns Iter4(n; f) that is n-times composition of f.

The parameter n : N determines how many copies of f and copies
of compose a4 must be used to produce the output by Iter,. Hence,
the parameter n : N determines a collection of linked socket boards that
are to be assembled into operation Iters(n;x): (A — A) — (A — A).
An example for Iter4(4;x*) is shown in Fig. 8.

4.2  Operation Change

For a sequence of objects of type A, i.e. operation ¢ : N — A, and a
fixed a : A, change n-th element (i.e. ¢(n)) to a. The operation Change 4
is of type (NV; A; (N — A)) — (N — A), such that Changes(n;a;q)(n)
is a. For k different than n, Changea(n;a; q)(k) is q(k).

Change corresponds to if-then and case constructs in program-
ming.

Interpretation of Change in the terms of links consists in considering
link of the type N with signal n, and the link of type A with object a,
together with an operation of type N — A, and checking the input of
the operation. If the input s the same as n, then change the output of
the operation to a, else do nothing. The phrase the same corresponds to
a primitive relation on type N that will be constructed in Section 9.

In Section 5, Change is needed to construct operations that corre-
spond to primitive recursion schemata on higher types, i.e. Grzegorczyk’s
iterators.

Change, Iter and Copy are not simple and their realizations depend
on the input objects. The rest of the primitive operations have interpre-
tations as static socket boards dependent only of the types, not on the
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input objects.

4.3 Currying

Currying is a syntactical rule to transform a term denoting function
with two or more variable (inputs) to equivalent (nested) term with
one outer variable; the other variables are hidden inside the term. It
was introduced by Moses Schonfinkel in 1924 and later developed by H.
Curry.

IN
A *D ‘A’
fl i
*B
apply ouT—
v
® e
apply ,
= ouT @ -

Figure 9: On the left, the construction of operation h corresponding to
uncurrying; here D denotes A — (B — C). On the right, the construc-
tion of currying.

Operation f : (4; B) — () is transformed by currying into operation
g:A— (B — (), such that f(a;b) denotes the same object as g(a)(b).

Currying as well as uncurrying (i.e. the reverse transformation dual
to currying) can be represented as operations, i.e. interpreted as socket
boards.

The construction of uncurrying as an operation of type (A — (B —
C)) — ((4; B) — C) is presented in Fig. 9. Compose applya—,(B—c)),4
and applyp—c),p by linking the output (of type B — C) of the first
application to the one input (of type B — C) of the second application.
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Denote this composition by h; it is of type (A — (B — C)); A; B) —
C). It has three inputs. Once h is applied only to the first input (say
f:A— (B —C)),it returns h(f;*;*) : (A;B) — C.

currying as an operations of type ((4; B) - C) - (A — (B — () is
a bit strange construction shown in Fig. 9. It is the operation consisting
of the input socket of type A, and the output socket board of type
(A; B) — C. Input socket A is linked to the socket A in the output
board. Putting operation f : (A; B) — C into the output board(!) results
in equivalent operation of type A — (B — C). Note that usually input
object is put into input. However, here the object is put into output.

Currying and uncurrying transform an operation into equivalent op-
eration of different type. This equivalence will be discussed in a broader
context in the Section 9.7.

5 Constructability and primitive recursive ob-
jects of all finite types

The schema of primitive recursion for operations of the first order (from
natural numbers into natural numbers) is clear. However, it is not so
obvious for operations of higher types, where input objects as well as
output objects may be operations. The recursion schema for second order
operations was introduced by Rézsa Péter [30].

Godel System T [12], and Grzegorczyk System [16] are based on the
recursion on higher types. Grzegorczyk’s iterators (as primitive recursion
schemata indexed by types) are considered as objects.

H. Curry [7] defined Grzegorczyk’s iterators as terms in combinatory
logic using pure iteration combinator corresponding to the operation
Iter introduced in Section 4.1.

Girard [10] defined higher recursion schemata as terms in his System
F.

The higher-order recursion is still of interest mainly because of its
application in programming. However, recent works are based on formal
approaches. For the Goédel-Herbrand style approach (see L. C. Paulson
[29]), it is still not clear what is the meaning of equality for objects of
higher types; this problem will be discussed in Section 9.
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In M. Hofmann [19] and J. Adamek et al. [1] a category-theoretic se-
mantics of higher-order recursion schemes is presented. In programming,
see Ana Bove et al. [3], recursive algorithms are defined by equations in
which the recursive calls do not guarantee a termination.

Finally, Carsten Schurmann, Joelle Despeyroux, and Frank Pfenning
[33] propose an extension of the simply typed lambda-calculus with it-
eration and case constructs. Then, primitive recursive functions are ex-
pressible through a combination of these constructs. Actually, they did
the same as the construction of Grzegorczyk’s iterator presented below,
however at the level of abstract syntax, that is, in the similar manner
as Girard did earlier.

5.1 Grzegorczyk’s iterator

Although the Grzegorczyk System was intended to be constructive, it is
still a formal theory.

Grzegorczyk's iterator denoted here by R4 is a primitive (in Grze-
gorczyk System) object of type

A= (N=-(A—A) > (N—A)
that satisfies the following equations:

foranya: A, ¢:N—(A— A),and k: N

RY(a)(c)(1) =a

RA(a)(¢)(k + 1) = c(k) (RA(a) () (k)

A notational convention is introduced for application () to simplify pre-
sentation, i.e. f(a)(c)(k) is the same as ((f(a))(c))(k).

The problem is with the equality for objects of type A. In System F
equality of two terms means their reduction to the same normal form.
In a formal theory, the axioms of equality for all types must be added
to the theory. In Section 9, relations corresponding to the equality on
higher types are constructed.

By applying currying and uncurrying, R” can be interpreted equiv-
alently as operation of type

(N (A= 4) = (A= (N—A4)
and then as operation R4 of type

(N=-(A—=A4) = (N—=(A—A4)

Now, the definitional equations above can be rewritten as:
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RA(e)(1)(a) = o,

RA(e)(k + 1)(a) = c(k) (R () (k)(a))
where R4 (c)(k)(a) is the same as R4(a)(c)(k).

In this new form the iterator is an operation that for input object
(sequence) ¢ : N — (A — A) produces object (sequence) ¢: N — (A —
A). First element of this sequence, i.e. ¢(1), it the identity operation on
A, i.e. id4. The element ¢(k +1) (i.e. RA(c)(k+1) ) is the composition
of &(k) (i.e. (RY)(c)(k) ) and c(k). In fact, ¢(k + 1) is the composition
of the first k elements of the sequence c.

Girard’s recursion operator (indexed by type A) is defined as a term
(denoted by R) in System F. The index is omitted. Definition of R is
based on interpretation of natural numbers as operators for iterating
operations. Applying number n to arbitrary operation (having the same
type for input and output) means to compose n-times the operation with
itself.

The recursion operator R is of type A — ((A — (N — A)) — (N — A)),
and has the following property.

Foranya: A,v:A— (N — A)and k: N,

R(a)(v)(1) = a

R(a)(v)(k + 1) = v(R(a)(v)(k))(k)

The equalities above must be understood as term reduction to the same
normal form.

Apply currying and uncurrying in the similar way as for the Grze-
gorczyk’s iterator.

(A— (N — A)) and A can be swapped, so that

(A= (N —=A4) = (A= (N—A4)

Then, in the first and the second segment, N and A can be swapped, so
that

(N—=-(A—A4) > (N— (A= A4)

Hence, R may be rewritten equivalently as

R of type (N = (A — A)) = (N — (A — A)),

such that

R(9)(0)(a) = a, where v : N — (A — A) satisfies v(k)(a) = v(a)(k),
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R(9)(k +1)(a) = o(k)(R(D)(k)(a))
In this form R is exactly the same as Grzegorczyk’s iterator, i.e. for a
sequence of operations of type A — A as input, it returns the output
sequence where its n + 1-th element is the composition of the first n
elements of the input.

However, this cannot be taken literally that the input as a sequence
is taken as whole (as actual infinity) by the Grzegorczyk’s iterator (and
Girard’s operator) and returns a complete sequence as its output. From
the syntactical point of view it is acceptable as a definition of a term,
however not as a construction. Actually, the parameter n : N, that refers
here to the n-th sequence element, must refer to construction parameter.

It will be clear in the following construction.

5.2  Construction of Grzegorczyk’s iterator

Let’s come back to the notation describing constructions and let C' de-
note the type (N — (A — A)).

We are going to construct operation iterator : C — C, such that
(informally) for any input object (sequence) ¢ : C returns object (se-
quence) ¢ : C, such that n-th element of ¢ is the composition of the first
n elements of sequence c. Although literally it is the same as for Grze-
gorczyk’s iterator, it will be clear that at any construction step, iterator
is a finite structure, that is, the parameter n : N in the construction of
iterator refers always to this finite structure, i.e. to the first n elements
of ¢ and of ¢.

The detailed and explicit construction of this operation is simple,
however a bit laborious. It is worth to carefully analyze this construction
in order to grasp the full meaning of the constructability.

The construction needs two operations op and Recy constructed in
Fig. 10.

The operation op takes number n and a sequence c as the input and
returns new sequence c¢ that differs from ¢ only on the (n+1)-th element,
that is, ¢(n + 1) is the composition of two operations ¢(n) and ¢(n + 1).

To explain the construction, let n : N and ¢ : C' be considered as
input parameter (not as concrete objects), i.e. as pair (n,c) of type
N x C.
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Figure 10: Construction of operations op : N xC' — N xC, and operation
Recy : (N;C) — (A— A)

e Operation projn ¢ applied to (n,c) returns two outputs:
proj%c(n, ¢) denoted by n", and projfhc(n, ¢) denoted by .

e Copyn applied to n° returns also two outputs: Copy};(n®) denoted
by n!, and Copy?,(n®) denoted by n?.

e Copyc applied to ¢ returns: C’opyé(co) denoted by ¢!, and Copy%(co)
that is used again for coping.

e Copyl(Copy? () is denoted by ¢?, and CopyZ (Copyz(c?)) is de-
noted by ¢.

o ¢! c?, 3 are copies of ¢°, and n',n

are copies of ¢ and n respectively.

2 as copies of n°, actually they
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e Apply Succ to n?, i.e. Succ(n?). Then copy it twice, that is, ap-
plying Copyn to Succ(n?) returns: Copy}; (Succ(n?)) denoted by
n', and Copyl (Copy3;(n')) denoted by n?, and
Copy%; (Copy3;(n')) denoted by n>.

e n', n? and n? are three copies of Succ(n?), that is, the same as

n—+ 1.

e Denote apply((C;N)_,(A_)A)MC;N)(cl;nl) as cl; it is the same as
n-th element in the sequence c, i.e. ¢(n).

e Denote apply((C;N)%(AHA))’(C;N)(02;ﬂl) as ‘3127,13 it is the same as
c(n+1). N

° cormooseAA,A(c}11 ; cil) is the same as composition of ¢(n) and ¢(n+

1). Denote the composition by f.

e Change in the sequence ¢® the n?-th element to f, i.e.
Changec(n?; f;¢), and denote it by c. In fact, the (n + 1)-th
element of ¢ was changed to f.

e Join n? and ¢ into a pair, that is, jOZ'TLN’C(QS;Q), and denote it by
(n+1,¢)

e Starting with (n, ¢) as the input in the construction we get (n+1, ¢)
as the output. Actually, the only change that was made in the
original sequence ¢ was to replace the (n + 1)-th element of ¢ by
the composition of two operations ¢(n) and c¢(n + 1).

The description of the construction of the operation op : N xC — N x|
in Fig. 10, is completed.

Let N xC' be denoted by D, then op : D — D. Now, operation Iterp
can be applied to op.

Note that Iterp(n)(op)(1,c) is the n-th iteration of operation op that
for the input (1, ¢) returns (n+1, ¢) such that for any k = 1, ... n+1, the
element ¢(k) is the composition of the first k elements of ¢. The elements
c(m), for m geater than n + 1, are the same as ¢(m). Note that n : N is
the parameter of the construction. In order to construct Grzegorczyk’s
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iterator from op and Iter, the operation Reca, shown in Fig. 10, must
be constructed first.

Let the type (N; (D — D)) — (D — D) be denoted by E. Operation
Recy is constructed in the following way.

e Apply Iterp only to the operation op leaving the input n : N open,
i.e.
applyg, N.(D—D) (Iterp;n;op) is operation of type D — D. Let this
operation be denoted by g. Note that the operations op has been
already constructed in Fig. 10, whereas input n is a parameter.

e joiny c(1;c) is denoted by (1,c¢). Note that ¢ is a parameter.

* applyp—p),p(g; (1,¢)) is denoted by (n, c).
Let proj]]\{c(@, ¢) be denoted by n, and projf,vc(n, ¢) by c.

e n is the same as n + 1, and for any k = 1,2, ... ;n+ 1, ¢(k) is the
composition of the k first operations in the original sequence c.

e Pred(n) is the same as n. Finally, applyc n(c, Pred(n)) is opera-
tion of type A — A. It is the composition of the n first elements
(operations) of the original sequence c.

This completes a description of the construction of the operation Recy4 :
(N;C) — (A — A) in Fig. 10.

For the inputs n and ¢, the output, i.e. Reca(n;c), is the composition
of the first n elements (operations) from the input sequence c. This is
the exact meaning of the construction of Recy.

However, applying currying, the operation Rec4 may be presented
equivalently as the operation Reca of type C — (N — (A — A)), i.e.
of type C — C. This may suggest that the operation Rec, takes as
its input a complete infinite sequence and returns as the output also a
complete infinite sequence. It is not true. By the construction of Recg
it is clear that n : N is the parameter for this construction, i.e. for any
n : N the construction is a finite structure.

Operation Recy corresponds exactly to the Grzegorczyk’s iterator.
As an object, it can be used in more and more sophisticated construc-
tions.
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The conclusion is as follows. The level 0 can be viewed as a ground-
ing (concrete semantics) for Grzegorczyk System as well as for Godel
System T. As to a grounding for Girard System F, higher levels of the
Universe must be introduced. It seems that the Grzegorczyk’s idea of
primitive recursive objects of all finite types is fully explored on the level
0. However, the general recursive objects (in Godel-Herbrand definition)
have grounding (as constructions) on higher levels.

6 Continuum as a primitive type

In the XIX century and at the beginning of the XX century there was
a common view among the mathematicians that Continuum is different
than natural numbers and cannot be reduced to them, that is, Contin-
uum cannot be identified with the set of the real numbers, or in general
with a compact connected metric space. Real numbers are defined on
the basis of rational numbers (for example, as Cauchy sequences), and
rational numbers on the basis of natural numbers.
The following citations support this view.

e D. Hilbert [18]: the geometric continuum is a concept in its own
right and independent of number.

e E. Borel [38]: had to accept the continuum as a primitive concept,
not reducible to an arithmetical theory of the continuum [numbers
as points, continuum as a set of points].

e L. Brouwer [38]: The continuum as a whole was intuitively given to
us; a construction of the continuum, an act which would create all
its parts as individualized by the mathematical intuition is unthink-
able and impossible. The mathematical intuition is not capable of
creating other than countable quantities in an individualized way.
[-..] the natural numbers and the continuum as two aspects of a
single intuition (the primeval intuition).

In the mid-1950s there were some attempts to comprehend the intu-
itive notion of Continuum by giving it strictly computational and con-
structive sense, i.e. by considering computable real numbers and com-
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putable functions on those numbers, see Grzegorczyk[13] [14], [15] and
Lacombe [27]. These approaches were mainly logical and did not find a
ubiquitous interest in Mathematics.

It seems that rather the homotopy theory describes the Continuum
in a proper way. Recently, see HoTT [39], a type theory was introduced
to homotopy theory in order to add computational and constructive as-
pects. However, the type theory is based on Martin Lof’s type theory
that still is a formal theory invented to provide intuitionist foundations
for Mathematics. The authors of HoTT admit that there is still no com-
putational grounding for HoTT.

HoT'T is too serious enterprise and realized by so distinguished math-
ematicians to ignore it. The interpretation of the Continuum presented
below was partially inspired by HoTT.

6.1 Informal introduction of Continuum

Intuitively continuum (as an object) can be divided finitely many times,
so that the resulting parts are of the same type as the original continuum.
Two adjacent parts can be united and the result is of the same type as
the original continuum. Based on this simple intuition, continuum may
be interpreted as an analog signal transmitted in a link. Here the link
corresponds to the type Continuum whereas the signal corresponds to an
object of the type Continuum. In telecommunication there are natural
examples for link division, like frequency division and time division, as
well as for link merging especially in the optical networks.

While dividing a link into two (or more) parts it may happen that in
some parts there are no signals. These parts are deactivated (blinded)
and are not taken to next divisions.

As a result of divisions and deactivations, a structure of active parts
is emerged where each part is of the type Continuum, some parts are
adjacent, and the structure as a whole is also of the type Continuum.
This very structure may be interpreted as an approximation of the signal
in the link, more accurate as the divisions are finer.

If interpreting Continuum as a physical link, there are many kinds of
Continuum, of different dimensions, of different methods of division, as
well as of many criteria for deactivation of blind parts of a link. However,
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there are common features that constitute together the essence of the
Continuum. This very essence is formalized below.

The concept of the Continuum is a result of the discussion held by
the Author with Krzysztof Cetnarowicz (KI AGH) in July 2-4, 2014 in
Kudowa Zdré;.

6.2 Cubical complexes and Continuum

Since the closed unit interval [0,1] (a subset of real numbers) is an
example of continuum, let us follow this interpretation, however with
some restrictions. Let the n-th dimensional continuum be interpreted
as the unit n-th dimensional cube, that is, the Cartesian product of
n-copies of the unit interval.

Let us fix the dimension and consider a unit cube. The cube may be
divided into parts in many ways. However, the most uniform division is
to divide it into 2" the same parts, where n is the dimension of the cube.
Each of the part may be divided again into 2" the same sub-parts, and
so on, finitely many times. Some of the parts may be removed as they
are interpreted as empty (blind) in the link. The resulting structure is
exactly a uniform cubical complex (see for example [22]) consisting of
elementary cubes all of them of the same dimension. There is a natural
relation of adjacency between the elementary cubes. Two cubes (parts)
are adjacent if their intersection is a cube of dimension n — 1. Since our
intention is that the parts are not sets of points, the adjacency relation
between the parts must be given as primitive.

Let a uniform cubical complex (complex, for short) be denoted by
e. Two adjacent parts of e may be united into one part. After uniting
some adjacent parts, the resulting structure is called a manifold by the
analogy to manifolds in algebraic topology. See Fig. 11 for an example
of 2-dimensional unit cube that is divided, and then some of the parts
removed, and adjacent parts are united.

A complex may be arbitrary large, i.e. may contain a large number of
parts, however, usually its essential structure (information it contains)
is relatively small and does not depend directly on the number of the
parts. For this very reason the uniting, preserving this essential structure
and reducing significantly the number of parts, is of great importance.
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Denote by é the manifold resulting from uniting the all adjacent
parts in e.

Figure 11: Divisions, deactivations, and uniting

Ji O

Figure 12: Examples of é and é~! without black border and with black
border

Figure 13: Objects with one black outer border

The final manifold é consists of disconnected components, see Fig.
11 the first example from the right.

For complex e, let its complement (consisting of empty black cubes
(parts)) be denoted by e~!. It is dual to e and it is also the subject
to uniting its parts. The white final manifold é, and its dual black final
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Figure 14: More final dual manifolds and the corresponding trees

manifold é~! contain some essential information of the original object i.e.
the complex e. The adjacency relation between the white components of
¢ and the black components of ¢! reflects to some extent the structure
of e and e~!. However, this relation is not complete, that is, it can not
distinguish between two different cases shown in Fig. 12, see the first
two examples. Note that the adjacency between the white components
(as well as black components) to the border of the original unit cube is
important and can not be neglected. The adjacency to the border can
be eliminated if the border is fixed as the one black component, see Fig.
12 and Fig. 13. This simplifies (by aggregation) the adjacency relation
between black and white components. Denote this simplified aggregated
relation by R..

From now on, let the original unit cube have the black border as the
outer component.

The new primitive type Continuum is introduced. Object of this
type is any uniform cubical complex ¢ together with with its dual com-
plex ¢! as the pair (c,c™!), and with adjacency relations between ele-
mentary cubes, black and white ones. For short, let (¢,c™!) be denoted
as c.

Note that the number of white components and the number of black
components alone are not sufficient to express important information
of an object of type Continuum, see Fig. 14 and the two first exam-
ples where the number of white components and the number of black
components are the same.
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The adjacency relation R, contains more essential information of the
object (c,c™1).

Equivalence relation for objects of type Continuum. Any two objects ¢
and cy are similar if the relations R., and R., are isomorphic.

More interesting relations on Continuum may be introduced by us-
ing homomorphisms between relations R., and R.,.

Any black component (except the one that contains the border) it is ex-
ternally adjacent exactly to one white component. Also any white com-
ponent is externally adjacent exactly to one black component. Hence,
R, can be represented as the following tree. The root of the tree is the
black segment containing the border. The nodes of depth 1 (children
of the root) are the white segments adjacent (according to R.) to the
black root. Each of the white node of depth 1 has inner adjacent black
segments as its children (nodes of depth 2). Each of the black nodes
of depth 2 has inner adjacent white segments as its children (nodes of
depth 3). And so on. See Fig. 14 for examples for complexes of dimen-
sion 2. However, for higher dimensions the relation R, is not sufficient
to distinguish different manifolds, like tori and sphere in dimension 3. i.e
they have the same simple tree (black — white — black) corresponding
to their adjacency relations between black and white segments. Hence,
the aggregated adjacency relation R, reflects only partial information
contained in objects of type Continuum.

It is clear that there must be different and more subtle uniting cri-
teria that reduce the number of parts and adjacency relation for white
complex as well as for its dual black complex. Final result of such unit-
ing should represent important information contained in objects of type
Continuum. The problem is to find out the criterion that gives the all
essential information. The term essential should correspond to homotopy
theory.

6.3 Some remarks on the Continuum

The Continuum as a primitive type is a link whereas an object of Con-
tinuum is an analog signal transmitted in the link. This signal may be
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approximated and recognized (classified). It is done by dividing the link
into parts and deactivating those parts that are blind (there is no signal
in those parts). The result may be represented (digitalized) as a well
known finite combinatorial structure, that is, a uniform cubical complex
and its dual complex. These very complexes may be subjects for com-
putations consisting in uniting some adjacent parts and resulting in a
classification of the complexes (actually, of the signal in question).

The investigations presented above still need to be verified, especially
how is this approach related to the homotopy theory.

Cubical complexes are used in computational homology (see for ex-
ample [22]) where the cubes are considered as sets of points. However,
computations and construction on the type Continuum as a primitive
type seems to be novel in Informatics.

Equivalence relation on the type Continuum is important because
it may be considered as the equality; this will be discussed in Section
9. Equality is the key notion for Martin Lof TT and HoTT that still
does not have computational grounding. It is an important and missing
aspect of HoTT as stated by Robert Harper [17] one of the creators of
HoTT.

In homotopy type theory each type can be seen to have the struc-
ture of an weak oo-groupoid. There is a correspondence between the
oo-groupoids and topological spaces. Simplicial sets, cubical sets, and
cubical complexes are between them. Recent works [2] in HoTT may
indicate that the interpretation of the objects of Continuum as cubical
complexes makes sense.

7 Summary of the level zero

The primitive types, constructors, and operations described above con-
stitute the level zero of the Universe. What can be constructed on this
level? Since the primitive recursion schema corresponds to operations,
it is clear that all primitive recursive objects of all finite types can be
constructed as it is in System T and Grzegorczyk System. Since types
are used as terms in System F, it describes more than the constructions
at level 0.
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It is not clear what the Continuum contributes to constructions. It
is a hard problem, and concerns a computational grounding of HoTT as
well as of a large part of Mathematics.

The interpretation of types, their constructors, and operations as
links, signals, and socket boards is important. This gives rise to compre-
hend the key notion of object and its construction as a parameterized
finite structure. This interpretation is in opposition to formal theories,
where object is described as a term, construction amounts to substitu-
tion and lambda abstraction whereas computation to beta reduction.

Level 0 is the basis for building the higher levels of the Universe.

8 Levell

Passing to the level 1 consists in apprehending the level 0 as a generic
construction method where types can be considered as objects, type
constructors as operations and particular primitive operations (indexed
by types, for example compose) as a polymorphic operation that takes
types as its input and returns a particular primitive operation.

Since types from level 0 are to be considered as objects, a super
type for these objects must be constructed. Denote this super type by
Types?; the superscript 0 suggests that there will be also super super
type at level 1, and generally T'ypes™.

Level 1 is an extension of level 0, so that, all types, constructors,
operations and constructions from level 0 are also on level 1. Generally,
level n+1 is an extension of level n.

At level 1 and higher, new type constructor are introduced, i.e. de-
pendent types and polymorphic operations as it is in ML TT, System
F, and ColC. Actually, dependent types emerge from the level 0 in a
natural way as the necessary consequence of the generic construction
method of level 0.

What are types as objects? At level 0, they are interpreted as socket
boards constructed by product (x), disjoin union (+), and arrow (— by
separating input types and output types). Types0 (as the super type of
all types at level 0) can be constructed inductively.

At level 1, the following three type constructors at level 0, i.e. x, 4+, —,
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are in fact operations that given two types as input objects return an-
other type as the output object. As operations they are:

x1: (Types®; Types®) —1 Types®

+1: (Types®; Types®) —1 Types®

—1: (Types®; Types®) —1 Types®

Note that the type constructor —; above is the extension of the
type constructor —. Analogously, x; is the extension of x, and 4+ is
the extension of 4. The general convention is that subscripts denote
extensions whereas superscripts denote levels of operations and types.
The subscripts and superscripts are omitted if there is no confusion.

There is one common destructor for the operations x, + and —.
It is the operation des : Types® — (Types®; Types®) such that for a
primitive type as the input it returns two the same primitive types as
the output; for a composite type it returns the components either of
the product, or disjoint union, or arrow. Although this destructor is not
used in the constructions presented in this work, it is introduced for the
completeness of the level 1.

Types® is an inductive type, that is, an operation of type N —
Types® can be constructed at level 1 (actually in many ways) that enu-
merates all types from level 0. Let us fix one such operation and denote
it by Ind' : N — Types®.

Note that types from level 0 can still be used as types at level 1, see
Ind' above.

For all primitive operations at level 0, its extensions to level 1 is
marked in their type indexes; for example joina.p is extension to level
1 if at least one of the type A and B is a type at level 1.

Operation Copy is (by its nature) amorphous and extensible for all
construction of the Universe, i.e. once an object was constructed, its
construction can be repeated.

Primitive operations from level 0 are indexed by types of level 0.
At the level 1 these operations are outputs of higher order operation for
which these types are input objects. For example, plus! is a polymorphic
operation at level 1. Its input is of type (Types®; Types’) whereas the
type of output object depends (is determined) by the input object. For
input (A4; B) the operation plus® returns operation plusa g : (A; B) —
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(A + B) as the output.

The same is for all primitive operations at level 0, i.e.
join, proj, plus, get, compose, apply, const, Copy, Iter, Change, currying,
UNCUTTYING.

Their higher order versions (as operations at level 1) are denoted by
adding superscript 1, i.e. join', proj!, plust, get', compose!, apply*, const!,
Copy', Iter', Change', currying®, uncurrying".

All these operations are polymorphic, i.e. input object determines
the type of output object. For any of the operations above, this very de-
termination is an operation of type A — Types® where A is, for example,
(Types®; Types®) for join' and plus’.

The types of these polymorphic operations are the well known de-
pendent types ([11] and [28]), with constructor II as a generalization
of product and arrow, and constructor ¥ as a generalization of disjoint
union.

For operation F : A — Types?, an object of the type IIF is a poly-
morphic operation g that for input object a : A it returns output object
g(a) : F(a). If F is constant, i.e. its output is B independent of the
input, then IIF is reduced to the type A — B.

Objects of type X F are of the form (a;b) where a : A and b : F(a).

Operation F' may have multiple inputs, for example,

F : (Types®; Types®) — Types®, and the output F(A; B) is the type
(A; B) — (A + B). Note that plus' : ILF, and plus'(A; B) is the same
as plusy p.

According to the principle, on which the Universe is being build,
dependent types and polymorphic operations must be parameterized by
n : N. In fact, this parameter is implicit in the construction of Types®
as inductive type by operation Ind'. At the level 2, Types’ will be
considered also as an object of Types!.

Constructor for objects of type X F is as follows. For any operation
F : A — Types and operation f : IIF, (i.e. for alla : A, f(a) : F(a)), the
constructor o is of type IIF — (A — X F'), such that op(f) is operation
such that for any input a : A, it returns output (a; f(a) : F(a)) of type
YF.
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The dependent type constructors are interpreted as logical quantifiers
in Section 9.

Dependent type constructors are at level 1. They are extended (anal-
ogously as the product, disjoin union and arrow) to all higher levels of
the Universe.

Dependent type constructors are interpreted as operations at level 2
and higher. IT! and X, are operations (at level 2) of type
(A — Types®) — Types', whereas 113 and X% are (at level 3) of type
(A — Types') — Types®. These operations will be used in construc-
tions.

The super types Type! and generally Type™ were introduced implic-
itly. However, it is clear that Types' is the type of all types at level 1
that are considered at level 2 also as objects. Analogously for Types™.
This cumulative type hierarchy is inductive. Also each Types™t! is an
inductive type, i.e. operation Ind™ can be constructed that enumerates
all objects of this type.

9 Relations

The concept of relation is not easy to comprehend. Usually relation
is defined as is a collection of ordered pairs of objects. Actually, this
set theoretical definition is not sufficient. Relation is (like operation)
a primitive notion. It seems that it corresponds to a primeval generic
method of comparing two objects.

For any primitive type there is at least one elementary binary re-
lation between objects of this type. For the type Continuum it is the
similarity relation determined by the method for comparing two objects
and stating that they are either similar or not. For natural numbers the
relation is simpler. Elementary relations are the basis to construct more
sophisticated relations.

So far the types were inhabited (not empty), i.e. primitive types are
inhabited and type constructors produce inhabited types from inhab-
ited types. Introducing relations enforces some types to be uninhabited

(empty).
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9.1 Elementary relations for natural numbers

There are the following three interrelated elementary relations on N:
Equaly, Lessery, and Greatery constructed below.

There are two links of type N, one for n, and one for k. It is supposed
that for each of the links the state of the link can be recognized as either
empty or not empty. This may be considered as the most primitive
relation (property) for natural numbers.

Put the signals n : N and k : N’ into the two links. i.e. N and N'.
Procedure N. Check the two links. If each of them is empty, then this
is the witness (object) for the type Equaly(n; k) to be inhabited. If the
link N is not empty and the link N’ is empty, then it is the witness for
type Greatery(n; k) to be inhabited. If the link /V is empty and the link
N' is not empty, then it is the witness for the type Lessery(n; k) to be
inhabited. If both links are not empty, then apply to each of them Pred,
that is, Pred(n), and Pred(k) (it means to remove from each of the links
one elementary signal) and go to the beginning of the procedure.

For any n: N and k : N, Equaly(n; k) (n is equal to k) is a primitive
type (at level 1) corresponding to the states of the two links. Analo-
gously for Lessery(n; k) (n is lesser than k), and for Greatery(n; k) (n
is greater than k).

If a type is inhabited, it corresponds to truth, whereas the opposite
corresponds to false.

These three elementary relations are operations of type (N; N') —
Types'. So that for any n: N and k : N, Equaly(n; k), Lessern(n; k),
and Greatery(n; k) are types at level 1, called parameterized primitive
relational types. If a primitive relational type is inhabited, then a primi-
tive object of this type must be introduced. This will be done in Section
9.4 for relations, not for any particular type separately.

The elementary relations can be used in constructions of more so-
phisticated well known relations like, two numbers are relatively prime,
or n multiplied by k is m.

Generally, an elementary relation R is an operations (at level 2) of
type (Ay;...; Ar) — Types' such that for any a; : Aq, ..., ap : Ag,
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R(aq;...;ay,) is a primitive relational type at level 1.

Relation is a primitive notion identified with parameterized primi-
tive types. The primitive types correspond to evaluation of the relation
for parameters (input), i.e. checking if the relation is true for these pa-
rameters. Parameterized primitive types are at level 1, and treated as
objects at level 2.

Dependent type constructors II and > may be applied to relations.
They correspond to the quantifiers: for all, and exists.

In ColC [4] there is a separate class Prop for types that correspond
to parameterized primitive types. It seems that there is no reason to
separate relations from the rest of operations. However, parameterized
primitive relational types are used only for elementary relations.

9.2 Conjunction, disjunction and negation

Product of two types corresponds to conjunction, whereas disjoin union
to disjunction. For two relation Ry : A — Types', and Ry : B — Types'
and fixed objects a, b and two primitive types Ri(a), and Ra(b),

e conjunction is Ry(a) x Ra(b),
e disjunction is Rj(a) + Ra(b).

Negation as type constructor (denoted by —) is not easy to comprehend.
If type A is inhabited (this corresponds to true), then —A should be
empty and correspond to false. However, if A is empty, then how to
interpret that —A is inhabited? To state that —A is true means to con-
struct an object of type =A. What are objects of type =A? What can be
inferred from an empty type? Is there only one empty type? Negation
applied to a separate type has no sense. This is clearly seen in the fol-
lowing example. What is = Equaly(1;2)? It has sense (grounding) only
if the complements Greatery are Lessery are also considered. Hence,
the negation can be grounded only if the complete relation is consid-
ered. i.e. Fqualy, Greatery and Lessery together are complementary
parts of the complete relation. Negation of one part is grounded in its
complement.
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The conclusion is that the inherent part of a relation construction
is the construction of its complement. This very complement may be
considered as its negation.

The next problem concerns interpretation of the type constructor
— as logical implication. Consider A — B and cases where A and/or
B are empty. Interpreted as implication means that it is empty only if
A is inhabited and B is empty. That is, if A and B are empty, then
the type A — B is inhabited! What are operations that have input and
output empty? Logically it is ¢rue. Such operations have no sense, that
is, there are no such operations at all. Hence, the constructor — cannot
be interpreted as logical implication = , that is, (A = B) is defined
as the disjunction (—A + B).

Logically, the constructor — means that if the type A — B is inhab-
ited (operation g can be constructed) then for any proof (object) a : A,
operation g returns output g(a) as a proof (object) of type B. Hence,
arrow corresponds to the deriving rules in formal logic.

9.3 Complex relations

Once the elementary complete relations for primitive types are given,
the next problem is how to construct complex relations and types (as
propositions).

For natural numbers the complete elementary relation consists of
three parts: FEqualy, Greatery and Lessery.

Relations of the first order are operations of type (Aj;...;Ar) —
Types'. Higher order relations, i.e. of types (Ay;...; Ay) — Types™, will
arise as multiple quantifiers are used in constructions. The superscript
n is omitted.

For relation Ry : A — Types and Ry : B — Types, the following
constructions

compose(R1; Ra; X)

compose(Ry; Ra; +)

compose(Ry; Ra; —)
correspond to conjunction, disjunction and arrow of two relations R;
and Ry. The superscripts for 4+, x, — are omitted as well as the indexes
of compose.
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Informally these operations will be denoted by [R; X Ra], [R1 + R2]
and [R; — Ry]; they are of type (A; B) — Types. [R1 x Ra](a;b) denotes
the same as Ri(a) x Ra(b). Analogously for + and —.

If A is the same as B, then the relation R : A — Types, such that
R(a) is the same as Rj(a) x Ra(a) is constructed as the composition of
Copya with [R; X Ry], i.e. compose(Copya;[R1 x Ra)).

Negation of relation R (i.e. =R) is inherently built into the construc-
tion of the relation R. It is convenient to consider the negation — as
an operation of type Types — Types, however, it can be applied only
to parameterized primitive types (complete elementary relations) and
complex relations constructed from these elementary relations. Applica-
tion to other types has no grounding and no sense. Construction of the
extension of the negation to complex relations will be explained in the
next Section.

For any relation R of type A — Types, there are dependent types
IIR and ¥ R. The first one corresponds to logic formula (proposition)
Va.4R(a), whereas the second one to logic formula (proposition) J,.4 R(a).
Notice that we abuse somewhat the notation because R denotes object
whereas in formal logic it is just a symbol without interpretation. In
Section 11 the distinction between objects and symbols will be clarified
as well as an explicit grounding (interpretation) of terms and formulas
of a formal theory will be given.

If a relation has multiple arguments (inputs), say R : (4;B) —
Types™, then IIR corresponds to V,.AVp. g R(a;b), the same for 3. How-
ever, formula V,. 43p. g R(a; b) corresponds to the type that is constructed
as follows. Relation R must be transformed by currying to the equiv-
alent operation R : A — (B — Types™). In order to apply a depen-
dent type constructor, its version as operation is needed, i.e. II"*! or
Yt of type (B — Types™) — Types™tt. For example, logic formula
Fp.5R(a,b) (with free variable a : A) corresponds to the composition
compose(R; ¥"1): it is one input relation of type A — Types™ti.
Then, Ilcompose(R; ") corresponds to the logic formula (proposi-
tion) Ve.a3p.5R(a,b).

For relation R : A — Types, operation Copy applied to R, i.e. Copy(R)
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returns two outputs Copy!(R) and Copy?(R).

compose(Copya; [Copy' (R)+—-Copy?(R)]) (denoted by LEMp : A —
Types) corresponds to the law of excluded middle. For any input object
a : A the resulting output type LEMg(a) is R(a) + —R'(a’). Recall that
by the notational convention a’ is a copy of a, and R is a copy of R;
the same is for types. In Section 9.4, it will be clear that if the negation
operator — is extended for already constructed relation R, then either
R(a) is inhabited or —=R/(a’) is inhabited. Generally the type IILEMpg
is inhabited, that is, object of this type can be constructed on the basis
of the construction of R.

N N

= &) @)

*: Types

Figure 15: The construction of operation Fquivp modulo currying

Let us construct the relation that corresponds to logical equivalence
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of two relations Ry : A — Types and Ry : A — Types, i.e. informally
forany a : A, (—Ri(a)+Ra(a"))x (—Ry(a")+ R (a™)). Let the type A —
T'ypes be denoted by D. See Fig. 15 for the construction of operation that
is of type (D; A; D') — Types. Applying currying we get the required
Equivp of type (D; D') — D such that for any Ry, Ry and any a : A, the
type Equivp(Ry; R2)(a) corresponds to the above logical equivalence.

For already constructed relation R, the double negation ——R is logically
equivalent to R. That is, the type Equivp(——Copy'(R); Copy*(R)) is
inhabited, so that object of this type can be constructed on the basis of
the construction of R.

Negation of quantified relations. Let R : A — Types be a relation.
Logical formulas —V,. 4 R(a) and 3,.4— R(a) are logically equivalent, i.e.
VeaR(a) = Fapa— R(a) and J4.4- R(a) = —V4aR(a). Also
the logical formulas —3,.4F (a) and V4.4~ F(a) are logically equivalent.
For already constructed relation R, these equivalences correspond to the
following inhabited types:

Equivp(-IICopy! (R); E-Copy?*(R))
and

Equivp(~XCopy' (R); I-Copy®(R)).

Note that the relations as well as equivalences between relations are
considered as operations, that is, as objects of the Universe that are
parametrized finite structures.

The types constructed on the basis of parametrized primitive rela-
tional types correspond to propositions (atomic formulas) of a formal
language. This correspondence may be viewed as a grounding (mean-
ing) for these propositions. Some of these types correspond to axioms,
i.e. there are primitive objects of the types associated with the construc-
tions of complete elementary relations.

9.4 Relations on natural numbers

In this section the relations, types, and the primitive objects describe
the Procedure N, see Section 9.1. They are basis for more sophisticated
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constructions. It resembles axiomatic (however, not formal) approach in
Mathematics where the types and the primitive objects correspond to
axioms. From this point of view it is interesting to give minimal collec-
tion of such relations, types and objects that describe the Procedure N
completely.

Consider two relations Fy and Fy of type (N; N') — Types. Let us
change notation and now let [F} + F»] denote the following construction
compose(Copyn; Copynr; compose(Fy; Fa;+)), i.e. [F1 + F3l(n, k) is the
same as Fi(n, k)+Fa(n, k). Analogously for x. The basic inhabited types

Greater Lo N Copy_N' Lesser
N N’ N’ N
Compose Compose
Equiv

Figure 16: The equivalence of Greater(n; k) and Lesser(k;n)

(axioms) for the complete elementary relations Equaly, Greatery and
Lessery are as follows.

e Forall n: N and k : N': [[Equaly + Greatery] + Lessery](n; k).
The type II[[Equaly + Greatery]| + Lessery| states that the rela-
tions together are complete.

e The types II-[Equaly x Greatery] and II-[Equaly x Lessery]
and II-[Lessery x Greatery| state that the relations are disjoint.

e compose(Copyn; Equaly) is of type N — Types', it is the same
as n: N and Equaly(n;n). The type Ilcompose(Copyn; Equal )
corresponds to the reflexivity of relation Equaly.
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e It follows from the Procedure N that (n : N and k : N' and
Greater(n; k) ) is the same as (k : N and n : N’ and Lesser(k;n)),
i.e. they are equivalent. Both relations are of type (N;N') —
Types where N refers to the first link, whereas N’ to the sec-
ond link. The corresponding operation is constructed in Fig. 16.
Note that in the construction, in the second composition from the
left, the inputs are swapped.

e Primitive objects of the types above are to be introduced. For these
complete elementary relations as well as for relations constructed
from them, the types for double negation law and the type for LEM
as propositions follow from these axioms. It means that objects of
these types can be constructed from the primitive objects. Also for
logical equivalence for negation of quantified formulas, the objects
of the corresponding types can be constructed from the primitive
objects.

Note, that this approach may be generalized to any complete ele-
mentary relations.

FEqualy is an equivalence relation, so that it satisfies reflexivity, sym-
metry and transitivity. The relations Lessery and Greatery satisfy an-
tisymmetry, transitivity, and totality. All these conditions can be con-
structed as inhabited types, i.e. for each of these type, the primitive
object (interpreted as an axiom) should be given.

There are also inhabited types related to Succ and Pred:

e Foranyn: N, Equaly(n; Pred(Succ(n)). The corresponding type
is
Hcompose(Copy3;; compose(compose(Copyls; Suce); Pred); Equaly).

e Foralln: Nandk : N: Equaly(n; k) and Equaly (Suce(n); Suce(k))

are equivalent. Let compose(Suce; Succ'; Equaly) be denoted by
ESucc_

The corresponding type is IEquivp(Equaly; E5U°¢), where D is
(N; N') — Types.
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e Foralln: N and k: N,
Greatery(n; k) and Greatery(Suce(n); Suce(k)) are equivalent.

e For all n : N and k : N, Greatern(Succ(n); Succ(k)) and
Greatery(Pred(Succ(n)); Pred(Succ(k))) are equivalent.

e For any n : N, Greatery(Succ(n);n),
and for any n : N, Greater n(Succ(n); Pred(Succ(n))).
The corresponding types can be easily constructed.

e Relation Fqualy is the equality on NN, so that, the types corre-
sponding to substitution of n for m in Greatery and Lessery if
Equaly(n;m) should be inhabited.

For each of the above types a primitive object should be introduced. This
corresponds to axioms in arithmetic. It should be stressed once again
that these axioms describe the Procedure N. The primitive objects of
the types (corresponding to the axioms) are used in more sophisticated
constructions.

9.5 More inhabited types for natural numbers

A detailed construction of an inhabited type (corresponding to a theorem
in a formal theory), and an object of this type (a proof) is presented
below.

Informally (as a proposition) the inhabited type in question can be
described as: for all k : N’ there exists n : N, such that Greatery(n; k).
Relation Greatery is of type (N; N') — Types'.

Apply currying (see Section 4.3); the result is operation of type N’ —
(N — Types') denoted by Greaters;.
¥2: (N — Types') — Types* can be composed with with Greater$, i.e.
compose(GreaterS;; 2), is denoted by G, and is of type N — Types?.
The relation G corresponds to the logic formula 3,.5 (n > k).

The type IIG is inhabited and corresponds to the logical proposition
(theorem) Vi.ny TN (0 > k).

To prove this theorem, an object of type IIG must be constructed.
Intuitively the successor operation Succ should be of this type. However,
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it is of type N — N but the object must be of type IIG, i.e. it is
a polymorphic operation (denote it by op) such that for any k : N,
op(k) is an object of type G(k), i.e. op(k) is of the form (n;a) and
a : Greater(n; k).

It is enough to substitute Succ(k) for n. However, it is a syntactic
operation.

The appropriate construction is shown in Fig. 17. For input k£ : N,

AN *:A->N
T T
— /"'""'\\ applv/ \ applv/g

f(a gla)

Equaly(f(a), gla))

Greater

Greater{Succ(k; k')
Figure 17: The construction of operation F, and operation H

Copyy returns two outputs. The first output Copy'(k) is applied to
Suce, i.e. apply(Succ; Copy'(k)). Then, the result and Copy?(k) is ap-
plied to Greatery. The result is Greater(Succ(k); k). Denote this con-
struction by F: it is an operations of type N — Types’.

The type IIF is inhabited (it is an axiom, see the previous Section
9.4), and there is a primitive object of this type; denote it by f. For any
k:N, f(k): F(k).

Now we are going to use the constructor or; see the end of Section
8. Apply op to f, i.e. on(f) is such that for any k : N, op(f)(k) is the
same as (k; f(k)) and f(k) : Greater(Succ(k); k).

Hence, op(f) is the required operations op of type IIG.
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9.6 Relations on higher types

Two operations of the same type (say f and g of type A — N) are equal
if for any input a : A, Equaln(f(a),g(a)). This is an extensional notion
of equality for functionals. Appropriate relation Eqa(f, g) as operation
Eqy: ((A— N);(A — N)) — Types is constructed below.

First, for two fixed f and ¢ let us construct operation H of type
(A — N);(A = N)) = (A — Types'), such that for any a : A,
H(f;9)(a) is the same as Fqualy(f(a),g(a)).

e The construction of a bit different (modulo currying) operation H
is in Fig. 17. It is of type (A; (A — N); (A — N)) — Types' such
that H(a; f;g) is the same as Equaly(f(a),g(a)).

e By applying currying twice to H, the operation
H:((A— N);(A— N)) — (A — Types') is constructed.

e In order to construct relation Eqa(f,g) operation I1% of type
(A — Types') — Types? is needed.

e The composition compose(H,I12) is the construction of the re-
quired relation Eqa : ((A — N); (A — N)) — Types?.

FEq4 is an equivalence relation so that appropriate inhabited types
corresponding to symmetry, reflectivity and transitivity can be con-
structed as well as objects of these types.

This relation may be the subject for dependent type constructors. For
example, for any f there is g such that Eqa(f;g) (evidently a true propo-
sition), or there exists f, that for any g such that Eqa(f;g) (evidently
a false proposition). The construction of the first type is as follows.

e By applying currying to Fqa we get
Eq¢4: (A — N)— ((A— N) — Types?)

e The operation X3 of type ((A — N) — Types?) — Types> is
needed.

e Compose Eq§ with 33, i.e. compose(EqS; ¥3); it is of type
(A — N) — Types3; denote this operations by Eq5.
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IT can be applied to Eq, i.e. IIEq9 is the type corresponding to
the logic proposition
VogasnTpasn (9= f).

e IIF¢S is inhabited, so that an object of this type can be con-
structed. Intuitively, it should be the identity operations id(4_,n)-
The construction of the required object is analogous to the con-
struction in the previous section, and is reduced to the reflectivity
of relation Eq4.

A construction of the type (denoted by B) corresponding to the
proposition 3.4 ,nVga—n (9 = f) is analogous. B is empty, i.e. not
inhabited. Hence, the type —B is inhabited. So that an object of type
—B should be constructed. =B corresponds to the proposition
ViasnIgasn (9 # f)

Intuitively, it is clear that an object of type =B is an operation that
for any f, it returns compose(f, Succ) as the output. However, to be
precise, the type =B must be constructed first, and then, the object of
this type corresponding to this operation can be constructed.

To conclude the relations on natural numbers and functionals, note
that the grounding for them consists of the complete elementary rela-
tions Fqualy, Lessery, and Greater along with primitive objects that
correspond to axioms. Actually this grounding is the complete descrip-
tion of the Procedure N.

9.7 Summary of the relations

Since the equality can be constructed for functionals (i.e. operations of
type A — N), it can be extended to any higher order operations of type
B — (A — N), and then to any type.

In this context operation Copy is important. Given an object as
input, the output consists of two object, the first is the original object,
whereas the second one is a copy of the original. It is natural to say that
these two objects are equal. There are also different constructions that
are essentially the same, see Fig. 18 as an example.

There is also equality between objects of different types as a result
of currying and uncurrying. Operation Equiv, see Fig. 15 may serve
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apply Greater
Greater(n’; Pred(n)) Greater(n’; Pred(n))

Figure 18: Different equivalent constructions

as equality for relations. Generally, what was presented above does not
capture the complete intuitive meaning of the concept of equality.

The question is if “object a is of type A” may be considered as a rela-
tion. Generally, the type of an object is determined by its construction.
In Section 11, high order relation for types as objects is considered, i.e.
informally it is “type A is inhabited”.

Something similar to lambda abstraction can be performed on con-
structions by removing some objects that are, in fact, inputs. See Fig.
18 and objects Pred, Greater. After removing a concrete input object
(say, of type A) from the construction, its place becomes an input of
type A in this construction. Hence, a (de)constructor corresponding to
this removal may be introduced.

For the type Continuum similar investigations concerning complete ele-
mentary relations are needed. Analogously as Procedure N for natural
numbers, the Procedure C should be introduced as the basis for con-
struction of the parameterized primitive relational types that determine
the similarity relation and its completion. Although interesting, the sim-
ilarity introduced in Section 6.2 is too weak to capture all homotopic
properties of the objects of type Continuum.
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10 Relation verifications and the constructor
1f then_else

Verification whether a quantified relation (as a type) is inhabited or
not, is not easy because the quantification scope may be potentially
infinite and even not inductive. However, for particular cases the scope
of quantification is restricted and, in fact, finite.

N r"""\/"“\/’"“\

( e B ) ( Succ Copy_N o B )

V\?’
\ompose / \ompose /

~
compose ( ey )

compose,

*c
Figure 19: Operations Q™

In programming there is a kind of quantifications over finite domains,
that informally have a form of conditions, like (for all k < n there
exists i < f(n) such that R(k;7)). Although for all and exists above
may resemble the constructors II and X, they correspond to different
constructions where II and ¥ are not used.

Let the name condition denote a type that consists of disjunctions
and conjunctions of primitive relational types and their negations. The
disjunctive normal form (disjunction of conjunctions) is very convenient
for verification, i.e. once one component of the disjunction is verified as
true, then the condition is true; if one component of a conjunction is
false then the conjunction is false. A generic verification method can be
constructed on the basis of primitive relational types.

To construct conditions, disjunction +, conjunction x, and negation
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Figure 20: Operations L+

— are used as operations. Consider an informal condition exists i < n:
R(i)), where R : N — Types. Let C' denote N — Types.

Operation Q" of type (C’;C") — C is constructed in Fig. 19. For
Ry, R and i : N, Q7 (Ry; R2)(i) is the same as Ry(i + 1) + Ra(i).

We are going to construct operation Lt of type (C;N) — (N’ —
Types) such that for any R : C, k : N, and n : N, LT (R;k)(n)
corresponds to (R(k)+R(k+1)+R(k+2)+...4+R(k+n)), i.e. informally
(exists © such that k < i < (k+mn) and R(i)).

In Fig. 20 operation LT of type (C; N) — (N’ — Types)) is con-
structed such that LT (R;n)(k) is the same as LT (R;k)(n). The con-
struction of LT in Fig. 20 is explained below.

e Relation R : C is copied, and Copy!(R) is applied to Q" to the
input C”, and the result is denoted by F; it is of type C — C.
Applied to Iterc, i.e. Iterc(x; F) is of type N — (C' — C).

e By using currying and uncurrying (not shown in Fig. 20) we get



Figure 21: Relations R;; and Rjs

equivalent operation of type C' — (N’ — C) that can be applied
to Copy?(R).

e As the result, in the Fig. 20, the operation LT of type (C; N') —
C') is constructed. Since C’ denotes N — Types, Lt :(C;N') —
(N — Types). Using currying and uncurrying (swapping N and
N’), we get finally the required operation LT.

If in the construction of L™ operation + is changed to x (actually in
Q™"), then the resulting operation is denoted by L*. Then L*(R;1)(n)
corresponds to (R(1) x R(2) x ... x R(n)), i.e. informally (for all i <n:

R(i)).

The condition corresponding to (ezists i < n such that for all j < k,
R(i; 7)) is constructed as follows.
Now R is of type (N; N') — Types where N corresponds to i, and N’
to j. Apply currying to get the operation R of type N — (N — Types).
Operations L*(x;1) and Lt (x; 1) are of type (N' — Types) — (N —
Types), and are used in the very similar way as the constructors IT and
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Figure 22: Relation Ro;

DI

Compose R® with L*(x; 1), i.e. compose(R¢; L*(x,1)) is of type N —
(N — Types). For i and k, compose(R®; L*)(i)(k) corresponds to
(R(i;1) x R(i;2) X ... x R(i;k)).

Compose compose(R¢; L™ (x;1)) with LT (x;1), i
compose(compose(RS; L™ (x;1)); LT (x; 1)) is denoted by P; it is of type
N — (N — Types).

For n and k, P(n)(k) corresponds to ((R(1;1) x R(1;2) x ... X
R(1;k)) + (R(2;1) X R(2;2) X ... x R(2;k)) + ... + (R(n; 1) X R(n;2) x
. X R(n;k))).
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Figure 23: Relation Roo

10.1 Example

The following example serves to introduce a new operation constructor
and a new type constructor.

Let consty denote the operation of type N — (N — N) such that
for any ¢: N and any k : N, consty(c): N — N, and consty(c)(k) is
c.

The following operations: node, father and leaf together are inter-
preted as a data structure called tree. The parameter n : N denotes the
current scope of the data structure.

e node : N — N. For any i : N, node(i) is either 1 (denotes
an already constructed node), or 2 (denotes deleted node), or 3
(and greater) denotes unspecified node outside the current scope
of the construction. Initially, node is Changen(1;1;consty(3)),
i.e. node(1) is set as 1 (it is the root), and for i grater than 1,
node(1) is set as 3.
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Figure 24: Operation if_then else, composition, and iteration
whilep(4; con;t)

e father : N — N. father(i) is interpreted as the node that is the
father of node 4. Initially, it is the constant operation consty(1).
The node and the input parameter n : N determine which inputs
of father have intended meaning, i.e. for node k greater than n
or if k is a removed node, father(k) is ignored.

e leaf : N — N. For any i : N, leaf(i) is either 1 (it is a leaf if
node(1) is also 1 ), or 2 (is not a leaf), or 3 (and grater) as not
constructed or deleted. Initially, leaf is Changen(1;1; consty(3)).

The parameter n : N denotes the number of the last constructed
node; initially it is set as 1. The next natural number Succ(n) is for the
next node to be constructed in the tree.

In the construction of the operations, the parameter n : N deter-
mines the current scope of the operations. For a parameter grater than
n (outside of the current scope), the objects are still not constructed, so
that the reference to them does not have the intended meaning.

Let A denote (N — N), and B denote (N; N'; A; A’; A”) Two op-
eration are constructed to modify a tree; add and del both of type
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Figure 25: Operation f; corresponding to add

B — B. For input (n;o0;node™; father’™;leaf™) they return output
(k; 0;n0degy; fatheryy; leaf e ).

Operation add adds a node to the tree. The new node is given number
(n+ 1) and its father is an already existing node o.

Operation del removes node o if it is a leaf.

The following pseudo-codes describe the operations.

Operation add:

1. if (Greatern(o;n)) + Equaly(node™(0);2)) is true, i.e. 0 : N is
either outside of the current scope or it is a deleted node
then do nothing;
else

(a) Construct a new node Succ(n) to be a child of the node o.
That is, node(Succ(n)) becomes 1, i.e.
Changen (Suce(n); 1;node™)
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Figure 26: Operation t1o corresponding to add

(b) father™(Succ(n)) becomes o, i.e.
Changen (Succ(n); o; father™)

(c) leaf™(Succ(n)) becomes 1,i.e. Changen(Succ(n); 1;1eaf™)
denoted by leaf™

2. if Equalsy(leaf™ (0);1), i.e. o was a leaf in the tree
then

(a) leaf” (o) becomes 2, i.e. Changen(0;2;leaf™)
else do nothing.

Note that the phrase ’do nothing’ corresponds to idg.

The constructor if-then-else is a new primitive. It needs a condition,
and two operations. The input of the condition and the inputs of the
two operations are the same.

The first condition (denoted by is S11) of add corresponds to
(Greatern(0;n)) + Equaly(node™(0);2)). To construct it, the relation
Ry is needed that is in Fig. 21. It is of type (N; N'; (N — N); N”) —
Types where N corresponds to n, N’ to o, (N — N) to node™, and N”
to 2. Ry1(x;%,%;2) is the required Si1.
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Figure 27: Operation f; corresponding to del

The second condition (denoted by Si2) of add, corresponds to
Equalsy(leat™(0);1). In Fig. 21, relation Ry is constructed. It is of
type (N'; (N — N); N") — Types, where N’ corresponds to o, (N — N)
to leaf™, and N” to 1. Riya(*;%;1) is the required Sia.

Operation del:

1. if the condition
(Greater(0;n)+Equal y (node'™(0); 2)+-Equal y (Leat(0); 1)+
Equaln(0;1)), is true, i.e. o is either outside of the scope, or is a
removed node, or is not a leaf, or is the root of the tree,
then do nothing
else

(a) node(o) becomes 2, i.e. Changen (0;2;node™)
(b) leaf(o) becomes 2, i.e. Changey(0;2;1leaf’™) is denoted by

leaf®™

2. if node o is the only child of its father, i.e. for all ¢ : N such that
Lesserpy(i;n),
(Equaly(0;i) + ~Equal y (father™(i); father™(0))),
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i.e. either the nodes o and i are the same, or they have different

fathers
then

(a) leaf™ (father™ (o)) becomes 1, i.e.
Changey (father(0); 1;1eaf™)

else do nothing

The first conditions in del (denoted by S21) corresponds to
(Greatery(0;n) + Equaly(node™(0); 2) + ~Equal y (leaf™(0); 1) +

Equaln(0;1)). The auxiliary relation R is constructed in Fig. 22. Tt is

of type (N; N'; (N — N); (N — N); N"; N"': N"") — Types

where N corresponds to n, N’ to o, the first (N — N) to node'”, the
second (N — N) to leaf, N” to 2, N" to the first 1, and N to the
second 1. Rop(*;*; %;%;2;1;1) is the required So;.

In order to construct the second condition of del (denoted by Sa2), the
operation Rgs is constructed in Fig. 23. It is of type (N — N); N'; N) —
Types where (N — N) corresponds to father™, N’ to o, and N to i.
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Rao(father™:; 0;1)) corresponds to (Equal vy (0;1)+—-Equal y (father™(i);
father™(0))).

By currying we get operation RS, of type (N — N) — (N — (N —
Types)).

Operations L*(x;1) is of type (N — Types) — (N” — Types).
Compose RS, with L™ (x;1), i.e. compose(RSy; L* (x; 1)), is of type (N —
N) = (N" — (N” — Types)). By uncurrying we get the required Sas.
That is, for o, and n, Soz(father'™;o;n) is the same as
(Roo(father™; 0;1) x Ros(father™;0;2) x ... x Roo(father™;o;n)).

10.1.1 Operation if_then_else and while loop

It is clear that the if _then_else can not be constructed using the prim-
itives introduced by now. It needs two operations ¢t : B — C and
f : B — D having the same input, and a condition R : B — Types
also with the same input. Then, depending on R(b), it returns either
t(b) (if the condition is true) or f(b) (else). Let the constructor be de-
noted by if then_else(p ¢ p); see Fig. 24, where also a composition of
the two constructors corresponding to operations add and del is shown.
The constructor also needs a generic operation to evaluate conditions
in their disjunctive normal form. This generic verification operation is
supposed to be implicit in the constructor.

Note that B may denote a multiple input, i.e. (By;...; By), analo-
gously for C' and D.

The resulting operation has the type B as its input whereas C' and D
are its mutually exclusive outputs. The phrase mutually exclusive types
gives rise to introduce a new type constructor denoted by ||, so that C||D
denotes the output of the operation in question. It has also operational
version, that is, || : (T'ypes; Types) — Types.
if then else(p c,p) is of type ((B — Types); (B — C);(B — D)) —
(B — (C[|D)). That is, for any b : B, if then else ¢ p)([1;t; f)(b) is
either t(b) if R(Y'), or f(b”) otherwise. This means that the input object
b is copied twice to get the same three objects b, ', b".

If f (or t) is idp, then it means do nothing, i.e. return the input as
the output.
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Note that if then else(p p p) cannot be reduced to operation of
type B — B.

The primitive operation get4 p (see Section 3.1) is, in fact, of type
(A+ B) — (A]|B).

Operation corresponding to while loop in programing can be con-
structed using if then else(p g p) and a modified version of the it-
erator constructor. Informally, operation ¢ is iterated if the condition
is true. Let this conditional iteration be denoted by whilep; it is of
type (N; (B — Types);(B — B)) — (B — (B||B)). For any n : N,
con: B — Types, and t : B — B, whilep(n;con;t) is the n times com-
position of the operation if,then,else(B,B,B)(con; t;idp). Construction
of whilep(4; con;t) is shown in Fig. 24.

Actually the above construction of the while loop is rather inef-
ficient. Only one or two of the mutually exclusive outputs are active.
Active output means that there is an object in the output. Since the
next composition depends on the current evaluation of the condition,
it should be done only if the condition is true. It it is false then the
iteration should be completed.

The operation while will be used in Section 11.

10.1.2 Constructions of add and del

Recall that B denotes (N; N'; A; A’; A”) where A denotes (N — N). The
constructions of the operations add and del use if then_else g p p).

Since the conditions for add and del are already constructed, only the
corresponding operations ¢t and f are to be constructed. By introducing
dumb input types the conditions become of type B — T'ypes.

For add:
e The first if _then_else

— Condition S11 is Ri1(%;%;*;2); see Fig. 21.
— Operation ¢ is idp.

— Operation f is denoted by f11 and is constructed in Fig. 25.

e The second if_then_else
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— the Condition Sig is Ria(x;*;1); see Fig. 21.
— Operation t is denoted by t12 and is constructed in Fig. 26.

— Operation f is idp.
For del:
e The first if_then_else

— the Condition S9; is constructed using relation
Roq (%; %;%;%;2; 15 1); see Fig. 22.

— Operation t is idp.

— Operation f is denoted by fs1 and is constructed in Fig. 27.
e The second if_then_else

— the Condition Sy is constructed using relation Rgo (see Fig.
23) by currying, composition with L* and uncurrying.

— Operation t is denoted by t29 and is constructed in Fig. 28.
— Operation f is idp.

11  Formal theories and the Universe: (Godel’s
First Incompleteness Theorem

Grounding of a formal theory in the Universe is presented on the basis
of the Godel theorem. The proof presented below is essentially the same
as the one by Barkley Rosser [32]. It is clear and obvious because the
logic of ordinary discourse for reasoning about a formal theory (see the
first page of [32]), can be constructed rigorously as a (relatively small)
part of the Universe. The problem of consistency of a formal theory is
discussed at the end of the Section.

Primitive types that correspond to a formal language and formal
theories are introduced below.

Formal language L is an extension of the first order logic language
with additional symbols for functions, relations and constants specific
to a formal theory.
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For the simplicity of the presentation, let terms of L be objects of
primitive type denoted by Termp, and well formed formulas of L be
objects of primitive type denoted by Formy,. Actually, rather L should
be considered as the primitive type along with primitive operations for
constructing objects of Termy and objects of Formy,.

Formp is an inductive type, i.e. its objects can be enumerated by
operation Gy, : N — Formy,. For the reason to be clear later on, the enu-
meration starts from the number 2. Number 1 is reserved for unspecified
formula. Natural numbers will be used to denote formulas.

There is also G, : Formyp — N, a Godel numbering, that is, each
formula is given the unique natural number called G6del number.

From the constructivist point of view presented in this work, any
formal theory T (in the formal language L) is identified with operation
Pr that is a construction (enumeration) of all formulas that are provable
in this theory, i.e. they have proofs in T'. Pr is of type N — Formy,.
Actually the construction of Pr is based on the axioms of T" and inference
rules. The final formula of a proof is just the formula that has been
proved.

Hence, given G and G, any formal theory T of language L is
identified with Pr. The question about semantics of a formal theory is
about an interpretation of the language in some well established domain.
An interpretation, as a grounding in parameterized finite structures of
the Universe, will be presented after the proof of Gédel Theorem. The
composition of Pr with a Gédel numbering G, i.e. compose(Pr;Gp)
is the operation that enumerates all Godel numbers (formulas) that are
provable in T'. Denote this composition by S; it is of type N — N. The
composition of G, with a Gddel numbering G, i.e. compose(Gr;Gp)
enumerates all Gédel numbers. Denote this composition by @Q; it is of
type N — N. Now, the natural numbers denote formulas, whereas Q(n)
is the Godel number of formula n.

If the type Equaln(Q(n); S(k)) is inhabited, then formula n is prov-
able, i.e. its Godel number Q(n) is equal to S(k) a Gédel number of a
provable formula.

For all k : N, =Equaln(Q(n); S(k)) means that the formula n having
Godel number Q(n) is not provable.



64

To construct the corresponding type, compose @ and S with = Equaly,
i.e. compose(Q; S; ~Equaly); it is of type (N'; N) — Types!.

Apply currying, i.e. currying(compose(S;Q; Equaly)); denote it
by H, it is operation of type N’ — (N — Types') with the input
corresponding to ). Operational version of constructor II is needed; i.e.
12 : (N — Types') — Types®.

Compose H with I12, i.e. compose(H;112). It is relation of type N’ —
Types?. Denote it by F. F(n) means that formula n is not provable in
T.

Let V : (N; N’; N”) — N denote the relation such that for any &k : N,
i:N"and j: N” V(k;i;j) is inhabited if and only if &k is the number
of the formula resulting from replacing in formula ¢ all occurrences of its
free variables with the term [j] corresponding to the number j. Although
details of the construction of V' are not presented here, the following
problem is important. How to construct the operation (denoted by g)
such that for a formula (say 1) as input it returns its number & such that
G (k) is the same as 1. Note that the same corresponds to the equality
relation on Formy. This very operation must be used in construction of
V.

Actually the operation g must have additional parameter n : N as
the upper bound of verification if G, (k) (where k is lesser than n) is the
same as the input . Hence, g must be of type (Formp; N) — N. Its
construction requires the equality relation on the type Formy, so that
it must be constructed first. Let this equality be denoted by Eqr..

For any formulas fi, fo, FEqr(f1, f2) is the same as

Equaln(GrL(f1); GL(f1)). Hence, Eqy, can be easily constructed.

The construction of g uses while loop with the condition Lessery (k;n)x
Eqr(f,Gr(k)). Here n : N refers to number of maximum iteration
times. For all n : N and k : N such that k is equal or less than n,
if Eqr(f,GL(k)), then g(f;n) is set as k, otherwise g(f;n) is set as 1
(unspecified). Although the details of the construction of V' are impor-
tant, it will be done elsewhere due to the limit of space.

Suppose that @), and S can be represented as terms, and V as a
formula in L, i.e. [S], [Q] are objects of the type Termy, and [V] is of
type Formy. This is the crucial point of the Godel theorem. In Peano
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Arithmetic these terms and this formula can be defined.

(*) There exists n : N such that F(n) and V(n;m;m)
corresponds to the following formula:

() Jp ¥ (QU([n]) # [S)([k]) A V] (] [, [m]): where [m] is a free
variable and symbols in square brackets denote corresponding terms in
L. Denote this formula by ¢([m]).

Hence, ¢(|m]) is an object of type Formy.

The construction of the relation corresponding to the formula (*) is
shown in Fig. 29; it is operation K : (N'; N) — Types' such that for
any n: N’ and m : N, K(n;m) is the same as F(n) x V(n;m;m).

*:N *:N

T T
o\ CTAEY,

apply apply

~ F(n)

apply

V(n;m;m) x F(n)
Figure 29: Construction of operation K

e Apply currying to K, and denote the result by K¢; it is of type
N — (N' — Types'), and has input corresponding to m : N.

e The operation ¥? : (N’ — Types') — Types? is needed now.

e Let compose(K¢; ¥2) be denoted by K; it is of type N — Types?,
and corresponds to the formula ¢([m]), which is an object of type
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Formyp.Forl: N, K(I)isthe grounding (meaning) of the formula
o([1]). So that if K(I) is inhabited (¢([l]) is true), then if V(n;l;1)
is inhabited, then the formula having number n is not provable in
T.

Let us summarize.
() denotes 3,V (QN([]) # [S1([K]) A [VI([n], ], [m]).
Let [ be the number of formula ¢([m)]), i.e. G (1) is ¢([m]).
Consider the formula (1)), i.e. ¥ (Q1([) # [SHEDAVI([n, [0, ).
It is the formula resulting from replacing in formula [ all occurrences of
its free variables with [[].
Let n be the number of the formula ¢([l]). Then, the type V(n;l;1) is in-
habited. Although it seems to be obvious, the construction of an object
of type V(n;l;1) requires some effort.

If K (1) is inhabited (i.e. ¢([l]) is true), then the formula having number
n (i.e. ¢([l])) is not provable.

If the type K (1) is not inhabited (¢([l]) is false), then the formula number
n (i.e. ¢([l])) is provable. That is, the theory T is inconsistent.

The conclusion: If theory 7' is consistent, then the formula ¢([l]) is true
and not provable. This is the Gédel’s First Incompleteness Theorem.

Remark 1. The word true in the statement of the Gédel Theorem means
that the type K (l) is inhabited. Hence, to be precise the statement of
the theorem is the following disjunction: (7" is consistent)+ K (). Note
that here the consistency means that no false formula is provable in T'.
This presupposes the interpretation of the language L in the Universe
that implicitly was already done. The problem is how to provide the
exact meaning for this very consistency as the type in the Universe.
Since the paper is already too long, this will be done elsewhere.

Remark 2. For a formal language L, terms correspond to objects, for-
mulas with free variables correspond to relations, propositions corre-
spond to types. This very correspondence between a formal language
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L and objects in the Universe is a grounding (concrete semantics) for
the language L. Axioms of a formal theory T correspond to inhabited
types, and to objects of these types; some of the objects may be primi-
tive. Inference rules correspond to primitive constructors and primitive
operations. As a whole, this correspondence is a construction in the
Universe. Hence, from the model theoretic point of view, this very con-
struction may be considered as an interpretation of the formal language
L, and corresponds to Alfred Tarski semantics [37]. Natural deduction
(introduced by Stanistaw Jaskowski [20] [21], and Gerhard Genzen [9])
correspond to general methods of object constructions in the Universe,
i.e. to the primitive constructors and primitive operations.

12 Final conclusion

All objects constructed in this paper are parameterized finite structures.
Each object and its type is determined and identified by its construction.
Operation Copy applied to an object a returns a copy of the object, i.e.
repetition of the construction of @ must be done. However, this copy is
different than its original object. Once an object is used in a construction
of another object, it cannot be used again. It is clear because objects
are interpreted by means of signals, links, and sockets. Since types and
their constructors are interpreted as objects on the consecutive levels of
the Universe, they also can be used only once. Operation C'opy must be
explicitly applied to produce as many copies as needed.

Universe is always open to qualitatively new constructions, and never
completed. As its instance (i.e. all that has already been constructed by
now), it is always a finite structure, because all its construction param-
eters are bounded, and there are finite many of such parameters.

The constructions in the Universe are monotonic and continuous.
As far as computable functionals are considered (see the classic defini-
tions by Kleene [24][25], Kreisel [26], Grzegorczyk [13] and [14]) they are
operations in the Universe. Also correspondence to the work of Platek
& Scott PCF*1 [35, 34]) and to Scott Domain [36] is straightforward.
Scott Domain may be viewed as a mathematical model (abstract de-
scription) of the Universe as a complete entity.
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Correspondences to System F, ML TT, and HoTT are clear and
were already discussed in the previous sections. Since they are formal
theories, it seems that they may have grounding in the Universe.

The Curry-Howard (also the Brouwer-Heyting-Kolmogorov) inter-
pretation should be revised. In the classic view it is interpretation of
propositions as types, and proofs as objects of these types. If types and
proofs are still syntactic terms and term rewriting rules, then it is an
interpretation of one formal theory in another formal (type) theory. How-
ever, if types and objects are parameterized finite structures constructed
as objects of the Universe, then this correspondence becomes interpre-
tation (semantics) of the formal theory.

Comparison to Calculus of Inductive Constructions ColC is of some
importance, because the Universe resembles ColC. However, the main
difference is that ColC is a formal type theory based on Lambda calcu-
lus. It satisfies the properties of confluence and strong normalization, so
that constructions are denoted by terms whereas computation is identi-
fied with term reduction. Implementation of ColC, as Coq proof assis-
tant, provides an operational semantics. There is an infinite well-founded
typing hierarchy of sorts whose base sorts are Prop and Set, i.e. the hi-
erarchy of universes Type(i) for any natural number i. Prop and Set are
objects of type Type(1). Type(i) is an object of Type(i+1). The sort
Prop intends to be the type of logical propositions. The sort Set intends
to be the type of small sets. This includes data types such as booleans
and natural numbers, but also products, subsets, and function types over
these data types. Set corresponds to Types®, Type(i+1) correspond to
higher levels of the Universe. Prop is an impredicative formal theory so
that it is incompatible with the relations in the Universe.

It seems that the Universe is natural, simple and obvious. It is an
attempt to understand what is grounding (semantics) of the (formal)
theories. Although this concerns mainly Mathematics and Informatics,
it is of some importance also for programming. It seems a bit strange,
that development of high level programming languages (for example
Haskell, Clojure and Scala) is far ahead of the theoretical investigations
concerning computations on higher types.

The Universe was presented above in an informal way, that is, the
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constructions were described in such a way that the idea and the essence
could to be easily grasped by the Reader. Since the constructions as ob-
jects are claimed to be parametrized finite structures, these very struc-
tures must be realized. The descriptions and particularly the figures
only suggest a way of implementing these objects as data structures in
programming. An interface is needed to assist a user to construct new
objects as well as to use them in computations and reasoning.

The work poses more problems than it solves. It seems that there
are still a lot of new constructors and new primitive types to discover.
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