PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the discrete linear chirp transform (DLCT) to estimate the parameters of multicomponent LFM signals

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zastosowanie transformacji DLCT do estymacji wartości parametrów wieloskładnikowych sygnałów LFM
Języki publikacji
EN
Abstrakty
EN
This paper is focused on method to estimate the parameters of multicomponent linear frequency modulation (LFM) signals. These nonstationary signals, which are often referred to as ”chirp”, are encountered in many fields such as communication, vibration analysis, radar systems. The presented method, which is based on the discrete linear chirp transform (DLCT), permits the chirp parameters to be precisely estimated. Its high performance, which was proven by the simulation results, coupled with its simplicity, makes this method useful for many applications.
PL
W artykule przedstawiono metodę estymacji parametrów wieloskładnikowych sygnałów z liniową modulacją częstotliwości. Z tego typu sygnałami mamy do czynienia w takich dziedzinach jak telekomunikacja, analiza drgań, systemy radarowe. Przedstawiona metoda, bazująca na DLCT (ang. Discrete linear chirp transform), pozwala na oszacowanie parametrów wspomnianych sygnałów. Jej wysoka skuteczność, potwierdzona wynikami symulacji, w połączeniu z prostotą, czyni metodę użyteczną w wielu zastosowaniach.
Rocznik
Strony
45--49
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
  • Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Department of Electronics, Electrical Engineering and Microelectronics, Akademicka 16, 44-100 Gliwice
Bibliografia
  • [1] Djuric P., Kay S., Parameter estimation of chirp signals, IEEE Trans. Acoust., Speech, Signal Process., vol. 38, no. 12, pp. 2118–2126, 1990.
  • [2] Jensen T., Nielsen J., Jensen J., Christensen M., Jensen S., A fast algorithm for maximum-likelihood estimation of harmonic chirp parameters, IEEE Trans. Signal Process., vol. 65, no. 19, pp. 5137–5152, 2017.
  • [3] O’Neil J., Flandrin P., Karl W., Sparse representations with chirplets via maximum likelihood estimation, IEEE Trans. Signal Process., no. 48, 1999.
  • [4] Boashash B., Time-Frequency Signal Analysis and Processing.A Comprehensive Reference. Academic Press, 2015.
  • [5] Hlawatsch F., Auger F., Time-Frequency Analysis. John Wileyand Sons, 2013.
  • [6] N. Huang and S. Shen, The Hilbert-Huang Transform and its applications. World Scientific Publishing Co, 2005.
  • [7] Fiolka J., Application of Hilbert-Huang transform to engineknock detection, Proceedings of the 20th International Conference Mixed Design of Integrated Circuits and System, MIXDES 2013, Poland, 2013, pp. 457–461.
  • [8] Yuan Y., Li Q.-F., Fu Y., Parameters estimation for multicomponent LFM signals using EMD based fractional Fourier transform, Asia-Pacific Conference on Computational Intelligence and Industrial Applications (PACIIA), Wuhan, China, 2009, pp. 488–491.
  • [9] Fiolka J., Fractional Fourier transform and its application to engine knock detection, Proceedings of the 22th International Conference Mixed Design of Integrated Circuits and System, MIXDES 2015, Poland, 2015, pp. 595–598.
  • [10] Ozaktas H. M., Kutay M. A., Candan C., The fractional Fourier transform with applications in optic and signal processing. John Wiley and Sons, New York, 2001.
  • [11] Alkishriwo O. A., Phd dissertation: The discrete linear chirp transform and its application,” Ph.D. dissertation, University of Pittsburgh, 2012.
  • [12] Fiolka J., Application of the fractional Fourier transform in automotive system development: The problem of knock detection, Conference proceedings: Signal Processing Algorithms, Architectures, Arrangements and Applications SPA 2017, 2017, pp. 286–291.
  • [13] Capus C., Brown K., Short-time fractional Fourier methods for the time-frequency representation of chirp signals, J Acoust Soc Am, 2003.
  • [14] Alkishriwo O. A., Chaparro L. F., A discrete linear chirp transform (DLCT) for data compression, 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), 2012, pp. 1283–1288.
  • [15] Ferrari G., Internal combustion engines. Esculapio, 2014.
  • [16] Millo F., Ferraro C., Knock in S.I. engines: A comparison between different techniques for detection and control, SAE Technical Paper, 1998, pp. 25–42, 982477.
  • [17] Iorio B., Giglio V., Police G., Rispoli N., Methods of pressure cycle processing for engine control, SAE Technical Paper, 2009, 10.4271/2003-01-0352.
  • [18] Eriksson L., Thomasso A., Cylinder state estimation from measured cylinder pressure traces - a survey, 20th World Congress, The International Federation of Automatic Control, 2017.
  • [19] Fiolka J., Preliminary investigation of the in-cylinder pressure signal using Teager energy operator, Conference proceedings: Signal Processing Algorithms, Architectures, Arrangements, and Applications SPA 2018, 2018, pp. 31–36.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fa8a892-1adf-4596-9b4e-923982fa648d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.