PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The study of glycerol-based fermentation and broth downstream by nanofiltration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the glycerol fermentation was carried out using Citrobacter freundii bacteria. The influence of glycerol and metabolites concentrations, and the pH changes on the efficiency of 1,3-propanediol production, during batch and fed-batch processes, was presented. The nanofiltration was used for the separation of obtained post-fermentation solutions. The resulted 1,3-PD solutions were significantly desalted, which may facilitate further downstream processes during 1,3-PD production.
Rocznik
Strony
117--122
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Technology and Environment Engineering ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Technology and Environment Engineering ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Technology and Environment Engineering ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Technology and Environment Engineering ul. Pułaskiego 10, 70-322 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Technology and Environment Engineering ul. Pułaskiego 10, 70-322 Szczecin, Poland
Bibliografia
  • 1. Saxena, R.K., Anand, P., Saran, S. & Isar, J. (2009). Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotechnol. Adv. 27, 895-913. DOI: 10.1016/j.biotechadv.2009.07.003.
  • 2. Nakamura, Ch.E. & Whited, G.M. (2009). Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454-459. DOI: 10.1016/j. copbio.2003.08.005.
  • 3. Raynaud, C., Sarcabal, P., Meynial-Salles, I., Croux, Ch. & Soucaille, P. (1993). Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum. Appl. Microbiol. Biotechnol. 38, 453-457. DOI: 10.1073_pnas.0734105100.
  • 4. Metsoviti, M., Zeng, An.P., Koutinas, A.A. & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J. Biotechnol. 163, 408-418. DOI: 10.1016/j.jbiotec.2012.11.018.
  • 5. Anand, P. & Saxena, R.K. (2012). A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol of growth and 1,3-propanediol production from Citrobacter freundii. New Biotechol. 29, 199-205. DOI: 10.1016/j.nbt.2011.05.010.
  • 6. Boenigk, R., Bowien, S. & Gottschalk, G. (1993). Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Appl. Microbiol. Biotechnol. 38, 453-457. DOI: 10.1007/BF00242936
  • 7. Colin, T., Bories, A., Lavigne, C. & Moulin, G. (2001). Effects of Acetate and Butyrate During Glycerol Fermentation by Clostridium butyricum. Curr. Microbiol. 43, 238-243. DOI: 10.1007/s002840010294.
  • 8. Ferreira, T.F., Ribeiro, R.R., Ribeiro, C.M.S., Freire, D.M.G. & Coelho, M.A.Z. (2012). Evaluation of 1,3-Propanediol Production from Crude Glycerol by Citrobacter freundii ATCC 8090. Chem. Engin. Transactions. 27, 157-162. DOI: 10.3303/CET1438080.
  • 9. Barbirato, F., Grivet, J.P., Soucaille, P. & Bories, A. (1996). 3-Hydroxypropionaldehyde, an Inhibitory Metabolite of Glycerol Fermentation to 1,3-Propanediol by Enterobacterial Species. Appl. Environ. Microbiol. 62(4), 1448-1451.
  • 10. Tomczak, W. & Gryta, M. (2013). The application of ultrafiltration for separation of glycerol solution fermented by bacteria. Pol. J. Chem. Tech. 15(3), 115-120. DOI: 10.2478/pjct-2013-0057.
  • 11. Barbirato, F., Himmi, El H., Conte, T. & Bories, A. (1998). 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries. Ind. Crops Prod. 7, 281-289. DOI: 10.1016/S0926-6690(97)00059-9.
  • 12. Yanga, Ch., Jianga, P., Xiaoa, S., Zhanga, Ch., Loub, K. & Xinga, X.H. (2011). Fed-batch fermentation of recombinant Citrobacter freundii with expression of a violacein-synthesizing gene cluster for efficient violacein production from glycerol. Biochem. Eng. J. 57, 55-62. DOI:10.1016/j.bej.2011.08.008.
  • 13. Russel, J.B. (1992). Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J. Appl. Bacteriol. 73, 363-370. DOI: 10.1111/j.1365-2672.1992.tb04990.x.
  • 14. Biebl, H. (1991). Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use a pH-auxostat. Appl Microbiol. Biotechnol. 35, 701-705. DOI: 10.1007/BF00169880.
  • 15. Colin, T., Bories, A. & Moulin, G. (2000). Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl. Microbiol. Biotechnol. 54, 201-205. DOI: 10.1007/s002530000365.
  • 16. Zeng, A.P., Ross, A., Biebl, H., Tag, C., Günzel, B. & Deckwer, W.D. (1994). Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiellia pneumoniae in glycerol fermentation. Biotechnol. Bioeng. 44, 902-911. DOI: 10.1002/bit.260440806.
  • 17. Homann, T., Tag, C., Biebl, H., Deckwer, W.D. & Schink, B. (1990). Fermentation of glycerol by Klebsiella and Citrobacter strains. Appl. Microbiol. Biotechnol. 33, 121-126. DOI: 10.1007/BF00176511.
  • 18. Annand, P., Saxena, R.K. & Marwah, R.G. (2011). A novel downstream process for 1,3-propanediol from glycerol-based fermentation. Appl. Microbiol. Biotechnol. 90, 1267-1276. DOI: 10.1007/s00253-011-3161-2.
  • 19. Anand, P. & Saxena, R.K. (2012). A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol of growth and 1,3-propanediol production from Citrobacter freundii. New Biotechol. 29, 199-205. DOI: 10.1016/j.nbt.2011.05.010.
  • 20. Wu, R.Ch., Ren, H.J., Xu, Y. & Liu, D. (2010). The final recover of salt from 1,3-propanadiol fermentation broth. Sep. Purif. Technol. 73, 122-125. DOI: 10.1016/j. seppur.2010.03.013.
  • 21. Bastrzyk, J., Gryta, M. & Karakulski, K. (2014). Fouling of nanofiltration membranes used for separation of fermented glycerol solutions. Chem. Pap. 68 (6), 757-765. DOI: 10.2478/s11696-013-0520-8.
  • 22. Himstedt, H.H., Marshall, K.M. & Wickramasinghe, S.R. (2011). pH-responsive nanofiltration membranes by surface modification. J. Membr. Sci. 366, 373-381. DOI: 10.1016/j.memsci.2010.10.027.
  • 23. Luo, J., & Wan, Y. (2011). Effect of highly concentrated salt on retention of organic solutes by nanofiltration polymeric membranes. J. Membr. Sci. 372, 145-153. DOI: 10.1016/j.memsci.2011.01.066.
  • 24. Mohammad, A.W., Basha, R.K. & Leo, C.P. (2010). Nanofiltration of glucose solution containing salts: Effects of membrane characteristics, organics component and salts on retention. J. Food Eng. 97, 510-518. DOI: 10.1016/j.jfoodeng.2009.11.010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fa6a317-f639-4bb8-a4c7-302d4d9d787f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.