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Abstract  

The subject of the paper is a circular plate with clamped edge supported on elastic foundation. Mechanical 
properties of the plate symmetrically vary in its thickness direction. Free axisymmetric flexural vibration problem 

of the plate with consideration of the shear effect is analytically studied. Two partial differential equations of 

motion based on the Hamilton principle are obtained. The system of equations is analytically solved and the 

fundamental natural frequency of axisymmetric vibration for example plates is derived.  
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1. Introduction  

The circular plates are parts of modern constructions. Nowacki [1] presented the 

dynamics problems of elastic structures. Ventsel and Krauthammer [2] presented the 

theoretical foundations of plates and shells. Wang et al [3] investigated the free 

axisymmetric vibration of transversely isotropic circular plates. Tajeddini et al. [4] 

described the three-dimensional free vibration of thick isotropic and functionally graded 

circular and annular plates with variable thickness on Pasternak foundation. Yas and 

Tahouneh [5] presented the free vibration problems of functionally graded annular plates 

supported on elastic foundations with consideration of various boundary conditions. 

Melekzadeh and Farajpour [6] described the axisymmetric free and forced vibrations of 

circular single- and double-layered nanoplates in an elastic medium. Foyouzat et al. [7] 

presented an exact solution pertaining to the problem of undamped free vibration of a thin 

circular plate resting on a Winkler foundation. Ahmad and Khorshidvand [8] analysed free 

vibration of a circular plate made of a porous materials. Żur [9] presented an analysis and 

numerical results related to free vibrations of functionally graded circular plates elastically 

supported on a concentric ring with consideration of the classical plate theory. Magnucki 

et al. [10] studied analytically and numerically the buckling and free vibrations problems 

of rectangular plates with symmetrically varying mechanical properties. Magnucki et al. 

[11] studied analytically and numerically the bending problem of a circular plate with 

symmetrically thickness-wise varying mechanical properties. Magnucki et al. [12] 

presented an improved shear deformation theory of bending beams with symmetrically 

varying mechanical properties in the depth direction. Magnucka et al. [13] studied 

analytically the bending and buckling problem of a circular plate with symmetrically 

varying mechanical properties. 

https://www.sciencedirect.com/topics/engineering/free-vibration-analysis
https://www.sciencedirect.com/topics/engineering/free-vibration-analysis
https://www.sciencedirect.com/topics/engineering/free-vibration
https://www.sciencedirect.com/topics/engineering/classical-plate-theory
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The subject of the studies is a circular plate with symmetrically thickness-wise varying 

mechanical properties of radius R and thickness h supported on an elastic foundation of 

the constant-foundation modulus k (Fig.1).  

 

Figure 1. Scheme of the circular plate with clamped edge  

2. Analytical model of the plate with consideration of the shear effect  

The symmetrical variation of the Young’s modulus of the circular plate in its thickness 

direction is assumed, similarly as in the papers [11], [12] and [13], in the following form  

( ) ( ) efEE 1= , (1) 

where: 
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 – dimensionless function,  

 100 EEe =
 – dimensionless parameter, ke – exponent (positive real number),  

 ζ=z/h – dimensionless coordinate, E0=E(0), E1=E(±1/2) – Young’s modules.  

The graphs of the dimensionless function fe(ζ) of the example circular plates are shown in 

Figure 2.  
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Figure 2. Graphs of the dimensionless function fe(ζ) of the example circular plates  

The value of the exponent ke and dimensionless parameter e0 are decisive for the shapes 

of symmetrical variability of the Young’s modules of the plate (1). In the particular case 

of e0=1, the modulus of elasticity remains constant i.e. the structure is homogeneous.  
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The deformation of the straight line normal to the neutral surface of the plate is shown in 

Figure 3. The upper and lower surfaces of the circular plate are free from shear stresses, 

therefore, the line of this deformation is perpendicular to these surfaces.  

 

Figure 3. The scheme of deformation of the straight line normal to the neutral surface  

The longitudinal displacement compatible with this scheme is as follows  
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where: ψ(r,t)=u1(r,t)/h – dimensionless function of the displacement.  

Taking into account the paper [12] the nonlinear dimensionless function of deformation 

of the straight line normal to the neutral surface of the plate is assumed in the following 

form  
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 – dimensionless coefficient, ks – exponent.  
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The stresses – the Hooke’s law  
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The elastic strain energy of the plate  
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The work of the elastic foundation’s reaction  
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where k [N/mm3] – the constant-foundation modulus.  

The kinetic energy  
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where: t [s] – time, ρ1 [kg/m3] – mass density of the upper/lower surfaces of the plate,  
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 – dimensionless mass density of the plate.  

Thus, based on the Hamilton’s principle ( ) 0
2

1
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t

t
k  , two differential 

equations of motion are obtained in the following form  
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The system of equations of motion (13) and (14) is the basis of analytical studies of the 

free axisymmetric flexural vibration problem of circular plate with symmetrically 

thickness-wise varying mechanical properties and with clamped edge and supported on 

elastic foundation.  

3. Analytical study of free axisymmetric flexural vibration of the plate  

The system of equations of motion (13) and (14) is approximately solved with 

assumption of the following two functions  
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where: wa(t), ψa(t) – time functions.  

These functions satisfy boundary conditions of the clamped edge of the plate: w(R)=0, 

∂w/∂r|0=0, ∂w/∂r|R=0, ψ(0)=ψ(R)=0. Substitution of these functions into the eqs (13) and 

(14) and application of the Galerkin’s method, gives two linear algebraic equations  
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The dimensionless time function from the equation (17) is as follows  
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Substituting this function into the equation (16) one obtains  
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 – dimensionless shear coefficient.  

The equation (19) is solved with the use of the assumed function  

( ) ( )twtw aa sin= ,  (20) 

where: wa – amplitude of the flexural vibration, ω – fundamental natural frequency.  

Substituting this function into the equation (19) one obtains the fundamental natural 

frequency  
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Exemplary calculations are carried out for the following data of the plates (Fig.2): material 

constants E1=200 GPa, mass density of the upper/lower surfaces of the plate ρ1=7850 

kg/m3, ν=0.3, radius R=500 mm, thickness h=25 mm, and constant-foundation modulus 

k=0, 1.0, 2.0, 3.0 N/mm3.  

The results of the calculations are specified in Tables 1–5.  

Table 1. Values of the exponent ks, coefficients Cww and Cs of the example plates  

Plates  P-1  P-2  P-3  

ks  0.7293  0.2854  0.1600  

Cww  0.066239  0.027627  0.013350  

Cs  0.0011326  0.00086118  0.00058309  

Cs/Cww  0.01710  0.03117  0.04368  

The value of the dimensionless coefficient Cww of flexural rigidity of the plate decreases 

for consecutive variants of the Young’s modulus patterns (Fig.2).  

Table 2. Values of the fundamental natural frequency of the plates for k=0  

Plates  P-1  P-2  P-3  

ω [rad/s]  1616.8  1484.7  1350.6  

ω/2π [Hz]  257.3  236.3  215.0  

Table 3. Values of the fundamental natural frequency of the plates for k=1.0 N/mm3  

Plates  P-1  P-2  P-3  

ω [rad/s]  4039.1  5505.3  7111.9  

ω/2π [Hz]  642.8  876.2  1131.9  

Table 4. Values of the fundamental natural frequency of the plates for k=2.0 N/mm3  

Plates  P-1  P-2  P-3  

ω [rad/s]  5478.6  7641.8  9966.7  

ω/2π [Hz]  871.9  1216.2  1586.2  

Table 5. Values of the fundamental natural frequency of the plates for k=3.0 N/mm3  

Plates  P-1  P-2  P-3  

ω [rad/s]  6611.8  9301.4  12169.2  

ω/2π [Hz]  1052.3  1480.4  1936.8  

Moreover, in the case of particular, i.e. homogeneous plate, the values of the 

dimensionless coefficients are as follows: e0=1, ke=0, ks=1, Cww=1/12, Cs=0.000825, 

Cs/Cww=0.01, Cρ=1. Thus, the values of fundamental natural frequency of the 

homogeneous plate are specified in Table 6.  

Table 6. Values of the fundamental natural frequency of the homogeneous plates  

Found. modulus  

k [N/m3]  
0  1.0  2.0  3.0  

ω [rad/s]  1569.7  3557.4  4779.8  5747.8  

ω/2π [Hz]  249.8  566.2  760.7  914.8  
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While omitting the shear effect (Cs=0) and the elastic foundation (k=0) the fundamental 

natural frequency (21) of the homogeneous plate takes the following form  

h

D
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2

33.10
= ,  (22) 

where: 
( )2

3

112 −
=

Eh
D  – flexural rigidity of the plate, E1=E, ρ1=ρ – material constants.  

This expression is identical with the one presented by Ventsel, and Krauthammer [2].  

Taking into account the calculation results specified in Tables 2–6, the influence of the 

foundation stiffness (foundation modulus k) on the natural frequency of the example plates 

is graphically presented in Figure 4.  

 

Figure 4. The graph of the natural frequency as a function of the foundation modulus  

Thus, the foundation stiffness significantly affects the natural frequency of the plates. The 

value of the natural frequency grows with the increase of the foundation stiffness.  

4. Conclusions  

Based on the above analytical studies the following remarks are formulated:  

 

▪ The presented analytical model of the circular plate is a generalization of the 

classical theory of plates.  

▪ The symmetrical variation of the Young’s modulus of the circular plate in its 

thickness direction is controlled by the exponent ke and the dimensionless 

parameter e0. The structure is homogeneous for e0=1, when the modulus of 

elasticity is constant (E=const.).  
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▪ The shear effect (value of the shear coefficient Cs) is small in the axisymmetric 

flexural vibration problem of example circular plates.  

▪ The influence of the foundation stiffness on the natural frequency of the plates is 

significant.  
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