PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Estimation of Fatigue Crack Initiation Life of H62 Brass

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, the excavation of the energetic approach that estimates the fatigue crack initiation life of metal is conducted for H62 brass. The benefit of the energetic approach is the division of the actual applied strain range Δε into two parts, that is, a damage strain range Δεd that induces fatigue damage within the metal, and an undamaged strain range Δεc, which does not produce fatigue damage of the metal and corresponds to theoretical strain fatigue limit. The brightness of this approach is that the undamaged strain range Δεc can be estimated by the fundamental conventional parameters of metal in tensile test. The result indicated that the fatigue crack initiation life of H62 brass can be estimated by this approach successfully.
Twórcy
autor
  • Northwest University, School of Chemical Engineering, Xi’an 710069, P. R. China
autor
  • Northwest University, School of Chemical Engineering, Xi’an 710069, P. R. China
  • Northwest University, School of Chemical Engineering, Xi’an 710069, P. R. China
autor
  • Northwest University, School of Chemical Engineering, Xi’an 710069, P. R. China
Bibliografia
  • [1] S. Basu, A. Amine Benzerga, Int. J. of Solids and Structures 71, 79-90 (2015).
  • [2] X. Zhang, K. Aifantis, Rev. Adv. Mater. Sci. 41, 72-83 (2015)
  • [3] E.C. Aifantis, Rev. Adv. Mater. Sci. 48, 112-130 (2017).
  • [4] M. Bagheripoor, R. Klassen, Rev. Adv. Mater. Sci. 56, 21-61 (2018).
  • [5] M. Zheng, Z. Yin, H. Teng, J. Liu, Y. Wang, Elastoplastic Behavior of Highly Ductile Materials, 2019 Springer, Singapore.
  • [6] N.E. Dowling, Fatigue of Engineering Materials and Struct. 2, 129-138 (1979).
  • [7] K. Tanaka, T. Mura, Journal of Applied Mechanics 48, 97-103 (1981).
  • [8] K. Tanaka, T. Mura, Metallurgical Transactions A 13A (1), 117-123(1982).
  • [9] K.S. Chan, Metall. Mater. Trans. A 34A, 43-58 (2003).
  • [10] M.D. Sangid, H.J. Maier, H. Sehitoglu, Acta Materialia 59, 328-341 (2011).
  • [11] H. Mughrabi, Acta Materialia 61, 1197-1203 (2013).
  • [12] F. Ellyin, J. of Eng. Mater. & Tech. 107, 119-125 (1985).
  • [13] K.N. Smith, P. Watson, T.H. Topper, J. Mater. 5, 767-778 (1970).
  • [14] N.E. Dowling, 32, 1004-1019 (2009).
  • [15] Y. Liu, B. Stratman, S. Mahadevan, Int. J. of Fatigue 28 (7), 747-756 (2006).
  • [16] E. Santecchia, A.M.S. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, M. El Mehtedi, S. Spigarelli, Adv. in Mater. Sci. & Eng. 2016, 9573524 (2016).
  • [17] J. Vazquez, C. Navarro, J. Dominguez, Fatigue Fract. Engng. Mater. Struct. 33, 22-36 (2009).
  • [18] S.C. Zhao, J.J. Xie, A.G. Zhao, X.L. WU, Sci. China, Physics, Mechanics & Astronomy 57 (5), 916-926 (2014).
  • [19] B. Abazadeh, F. Azimpour Shishevan, Eng. Failure Analysis 105, 1018-1031 (2019).
  • [20] N. Apetre, A. Arcari, N. Dowling, N. Iyyer, N. Phan, Procedia Eng. 114, 538-545 (2015).
  • [21] B. Joadder, J. Shit, S. Acharyya, S. Dhar, Materials Sciences and Applications 2, 1730-1740 (2011).
  • [22] P.A. Fomichev, Strength of Materials 32 (3), 241-247 (2000).
  • [23] A.A. Roostaei, Y. Ling, H. Jahed, G. Glinka, Theor. & Appl. Fract. Mech. 105, 10243 (2019).
  • [24] J.A.F.O. Correia, P.J. Huffman, A.M.P. De Jesus, S. Cicero, A. Fernández-Canteli, F. Berto, G. Glinka, Theor. & Appl. Fract. Mech. 92, 252-265 (2017).
  • [25] J.F. Barbosa, J.A.F.O. Correia, R.C.S. Freire Júnior, A.M.P. De Jesus, Int. J. of Fatigue 135,10552 7 (2020).
  • [26] X. Zheng, Int. J. Fatigue 8, 17-22 (1986).
  • [27] X. Zheng, C. Ling, Eng. Fract. Mech. 31, 959-966 (1988).
  • [28] X. Zheng, Acta Mechanica Solida Sinica 5, 175-184 (1984).
  • [29] X. Zheng, H. Wang, J. Yan, X. Yi, Fatigue Theory of Materials and its Application in Engineering. 2013 Science Press, Beijing.
  • [30] N.E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, 4th edn. 2013 Pearson Education Limited, Harlow.
  • [31] M. Zheng, E. Niemi, X. Zheng, Theor. Appl. Fract. Mech. 26, 23-28 (1997).
  • [32] M. Zheng, M.X. Tong, H.P. Cai, C.Z. Xu, M.Q. Huang, Theor. Appl. Fract. Mech. 54, 105-109 (2010).
  • [33] Q.J. Wang, C.Z. Xu, M.S. Zheng, J.W. Zhu, Z.Z. Du, Mater. Sci. Eng. A. 496, 434-438 (2008).
  • [34] C.Z. Xu, Q.J. Wang, M.S. Zheng, J.W. Zhu, J.D. Li, M.Q. Huang, Q.M. Jia, Z.Z. Du, Mater. Sci. Eng. A. 459, 303-308 (2007).
  • [35] Q.J. Wang, C.Z. Xu, M.S. Zheng, J.W. Zhu, M. Buksa, L. Kunz, Acta Metall. Sin. 43, 498-502 (2007).
  • [36] M. Zheng, J.H. Luo, X.W. Zhao, Z.Q. Bai, R. Wang, Int. J. Press. Ves. Pip. 82, 546-552 (2005).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fa2421b-3888-45d0-8d9c-938086305f93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.