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Abstract. An endomorphism of a graph G = (V,E) is a mapping f : V −→ V

such that for all x, y ∈ V if {x, y} ∈ E, then {f(x), f(y)} ∈ E. Let End(G) be the

class of all endomorphisms of graph G. The diamond product of graph G = (V,E)
(denoted by G , G) is a graph de�ned by the vertex set V (G , G) = End(G) and
the edge set E(G , G) = {{f, g} ⊂ End(G)|{f(x), g(x)} ∈ E for all x ∈ V }. Let

Km,n be a complete bipartite graph on m+ n vertices. This research aims to study

the algebraic property of V (Km,n , Km,n) = End(Km,n) after we have found that

Km,n,Km,n is also a complete bipartite graph onmmnn+nmmn vertices. The result

shows that all of its vertices (endomorphisms) form a noncommutative monoid.

1. Introduction

In the graph theory [2, 5], a graph G = (V,E) consists of a �nite nonempty

set V of objects called vertices, and a set E of 2-element subsets of V called

edges. In this paper we use the following notation and classi�cation of graphs.

• A path denoted Pn is a sequence of n + 1 vertices such that from each

of its vertices there is an edge to the next vertex in the sequence.

• A cycle denoted Cn consists of n vertices connected in a closed chain.

• A complete graph denoted Kn is a graph on n vertices such that every

two distinct vertices of G are adjacent.
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• A graph G is called a bipartite graph if V (G) can be partitioned into

two subsets U andW , called partite sets, such that every edge of G joins

a vertex of U and a vertex of W .

• A complete bipartite graph denoted Km,n is a graph on m+ n vertices

such that one can partition V into two subsets U andW , where |U | = m
and |W | = n. Every edge of G joins a vertex of U and a vertex of W as

well as every vertex of U is adjacent to every vertex of W .

• A u − v walk in G is a sequence of vertices in G, beginning at u and

ending at v such that consecutive vertices in the sequence are adjacent.

• A u− v path in G is a u− v walk in which no vertices are repeated.

• A graph G is called connected if G contains a u− v path for every pair

u, v of distinct vertices in G.

• A regular graph is a graph where each vertex has the same number of

neighbors, i.e. every vertex has the same degree or valency. A regular

graph with vertices of degree k is called a k-regular graph or regular

graph of degree k.

• The distance between two vertices u and v in a graph (denoted by

d(u, v)) is the number of edges in a shortest path connecting them.

This is also known as the geodesic distance because it is the length

of the graph geodesic between those two vertices. If there is no path

connecting the two vertices, i.e. if they belong to di�erent connected

components, then conventionally the distance is de�ned as in�nite.

• The diameter of a graph, denoted diam(G), is the maximum distance

between any two vertices in the graph.

De�nition 1. [1] A homomorphism of a graph G = (V,E) into a graph

H = (V ′, E′) is a mapping f : V −→ V ′ which preserves edges: for all

x, y ∈ V , if {x, y} ∈ E, then {f(x), f(y)} ∈ E′. Let Hom(G,H) be the class

of all homomorphisms from a graph G into a graph H. In particular, an en-

domorphism of a graph G = (V,E) is a mapping f : V −→ V such that for

all x, y ∈ V , if {x, y} ∈ E, then {f(x), f(y)} ∈ E. Let End(G) be the class of

all endomorphisms of graph G.

From this de�nition, one can easily see that Hom(G,H) may or may

not exist. For example, Hom(P1, C3) consists of 6 homomorphisms, while

Hom(C3, P1) is an empty set.
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Figure 1: Hom(P1, C3).

De�nition 2. [1] The diamond product of a graph G = (V,E) and a graph

H = (V ′, E′) (denoted by G,H) is a graph de�ned by the vertex set V (G,H) =
Hom(G,H), where Hom(G,H) �= ∅, and the edge set E(G ,H) = {{f, g} ⊂
Hom(G,H)|{f(x), g(x)} ∈ E′ for all x ∈ V }. In particular, the diamond

product of a graph G with itself (G,G) is de�ned by the vertex set V (G,G) =
End(G) and the edge set E(G ,G) = {{f, g} ⊂ End(G)|{f(x), g(x)} ∈ E for

all x ∈ V }.

An example of graph P1 , C3 is shown below.

Figure 2: Graph P1 , C3.

With this de�nition, there are some interesting results as follows:

Theorem 1. [3] The graph Pm ,Pn is connected for all positive integers m,n
and diam(Pm , Pn) = n.

Theorem 2. [3] Graphs Pm , Cn and Cn , Pm are connected for all positive

integers m,n. diam(Pm , Cn) ≤ m+ n and diam(Cn , Pm) = n.

Theorem 3. [3] If G is a connected graph, then the graph Pm,G is connected

for all positive integers m, and diam(Pm ,G) = diam(G)+2m.
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2. Some observations

In this paper, we study the diamond product of two complete bipartite graphs

Km,n.

• Denote V (Km,n) = {1, 2, 3, ...,m,m + 1,m+ 2, ...,m + n}, where
Vm = {x ∈ V (Km,n) | x ≤ m}, and
Vn = {x ∈ V (Km,n) | m+ 1 ≤ x ≤ m+ n}.
Since Km,n is a complete bipartite graph, each vertex of Vm is adjacent

to all vertices of Vn. Every edge joins a vertex of Vm and a vertex of Vn.
We can de�ne a function h : V (Km,n)→ {0, 1} such that

h(x) =

{
0 if x ∈ Vm,
1 if x ∈ Vn.

By the de�nition of a complete bipartite graph, we obtain for all

x, y ∈ V (Km,n), {x, y} ∈ E(Km,n) if and only if | h(x)− h(y) |= 1.

• Let f : V (Km,n)→ V (Km,n) be a homomorphism.

Then f ∈ V (Km,n ,Km,n) if and only if

h(f(i)) =

{
0 if i ∈ Vm,
1 if i ∈ Vnor

h(f(i)) =

{
1 if i ∈ Vm,
0 if i ∈ Vn.

For example, let us take a look at K2,2 ,K2,2.

• We can de�ne a norm as follows:

‖f − g‖ = max
i∈V (Km,n)

|h(f(i)) − h(g(i))|.

3. Main results

Lemma 1. For f, g ∈ V (Km,n ,Km,n), {f, g} ∈ E(Km,n ,Km,n) if and only

if ‖f − g‖ = 1.

Proof.

(⇒) Let {f, g} ∈ E(Km,n , Km,n). We have {f(i), g(i)} ∈ E(Km,n) for all

i ∈ V (Km,n). Thus |h(f(i)) − h(g(i))| = 1 for all i ∈ V (Km,n). This means

that ‖f − g‖ = 1.
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Figure 3: Graph K2,2 ,K2,2

(⇐) Let ‖f − g‖ = 1, where f, g ∈ V (Km,n , Km,n). From the de�nition of

norm, ∃ i0 ∈ V (Km,n) such that |h(f(i0)) − h(g(i0))| = 1. Without loss of

generality we may assume that h(f(i0)) = 0 and h(g(i0)) = 1.
If i0 ∈ Vm, then we obtain

h(f(i)) =

{
0 if i ∈ Vm,
1 if i ∈ Vn

and

h(g(i)) =

{
1 if i ∈ Vm,
0 if i ∈ Vn.

So |h(f(i)) − h(g(i))| = 1, for all i ∈ V (Km,n).
If i0 ∈ Vn, then we obtain

h(f(i)) =

{
1 if i ∈ Vm,
0 if i ∈ Vn

and

h(g(i)) =

{
0 if i ∈ Vm,
1 if i ∈ Vn.

So |h(f(i)) − h(g(i))| = 1 for all i ∈ V (Km,n). From both cases, we obtain

|h(f(i)) − h(g(i))| = 1 for all i ∈ V (Km,n). By the de�nitions of function h
and diamond product, {f, g} ∈ E(Km,n ,Km,n). ✷
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Theorem 4. Km,n ,Km,n is a complete bipartite graph on mmnn + nmmn

vertices.

Proof.

First, let us de�ne Vm
 =

{
f ∈ V (Km,n ,Km,n) | h(f(i)) =

{
0 if i ∈ Vm
1 if i ∈ Vn

}
and Vn

 =
{
f ∈ V (Km,n ,Km,n) | h(f(i)) =

{
1 if i ∈ Vm
0 if i ∈ Vn

}
.

Obviously, V (Km,n ,Km,n) = Vm
 ∪ Vn and Vm

 ∩ Vn = ∅.

To show that the graph of Km,n , Km,n is bipartite, we need to prove that

{f, g} ∈ E(Km,n , Km,n) if and only if f and g belong to di�erent sets of

vertices Vm
 and Vn.

(⇒) First, let f and g belong to the same set of vertices. Without loss of

generality we can assume f, g ∈ Vm. We have

‖f − g‖ = max
i∈V (Km,n)

|h(f(i))− h(g(i))|.

If i ∈ Vm, then h(f(i)) = 0, h(g(i)) = 0 and

max
i∈Vm

|h(f(i)) − h(g(i))| = max |0− 0| = 0.

If i ∈ Vn, then h(f(i)) = 1, h(g(i)) = 1 and

max
i∈Vn

|h(f(i))− h(g(i))| = max |1− 1| = 0.

Therefore ‖f − g‖ = 0 implies that {f, g} /∈ E(Km,n ,Km,n) by Lemma 1.

Then we conclude that if f and g belong to the same sets of vertices, there is

no edge {f, g} in the graph Km,n ,Km,n.

(⇐) Without loss of generality we can take f ∈ Vm and g ∈ Vn. We have

‖f − g‖ = max
i∈V (Km,n)

|h(f(i))− h(g(i))|.

If i ∈ Vm, then h(f(i)) = 0, h(g(i)) = 1 and

max
i∈Vm

|h(f(i)) − h(g(i))| = max |0− 1| = 1.

If i ∈ Vn, then h(f(i)) = 1, h(g(i)) = 0 and

max
i∈Vn

|h(f(i))− h(g(i))| = max |1− 0| = 1.
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Then |h(f(i)) − h(g(i))| = 1 for all i ∈ V (Km,n), and ‖f − g‖ = 1. Therefore
{f, g} ∈ E(Km,n ,Km,n).

By de�nition, all the vertices f ∈ Vm
 have the same value of h(f(i)) for

all i ∈ V , and all the vertices g ∈ Vn
 have the same value of h(g(i)) for all

i ∈ V such that ‖f − g‖ = 1. This means that each vertex of Vm
 is adjacent

to all vertices of Vn
, making it a complete bipartite graph.

We know that Km,n ,Km,n have two partite sets Vm
 and Vn

. From the

de�nition of Vm
, an endomorphism maps each vertex of Vm into a vertex of

Vm giving us mm choices and maps each vertex of Vn into a vertex of Vn with

nn choices. Thus |Vm| = mmnn. On the other hand, an endomorphism in

Vn
 maps each vertex of Vm into a vertex of Vn giving us nm choices and maps

each vertex of Vn into a vertex of Vm with mn choices. Thus |Vn| = nmmn.

Both cases combined, we obtain the number of vertices in the theorem. ✷

Corollary 1. Km,n ,Km,n is a regular graph if and only if m = n.

Proof.

Since Km,n ,Km,n is a complete bipartite graph, we may pick f ∈ Vm
 and

g ∈ Vn. From Theorem 4, we have the following:

• {f, k} ∈ E(Km,n ,Km,n) for all k ∈ Vn.
Thus deg(f) = |Vn| = nm ·mn for all f ∈ Vm.

• {g, h} ∈ E(Km,n ,Km,n) for all h ∈ Vm.
Thus deg(g) = |Vm| = mm · nn for all g ∈ Vn.

Hence, Km,n ,Km,n is a regular graph if and only if deg(f) = deg(g), which
implies m = n. ✷

Now let us consider the vertex set ofKm,n,Km,n with operation of function

composition.

Theorem 5. The vertex (endomorphism) set of Km,n,Km,n with composition

form a noncommutative monoid for all positive integers m,n > 1.

Proof.

It is clear that V (Km,n ,Km,n) is a monoid. To show that in the case when

m,n > 1, it is noncommutative we can take f, g ∈ V (Km,n ,Km,n) such that

f(i) =

{
i if i ∈ Vm,
m+ 1 if i ∈ Vn,

g(i) =

{
m+ 2 if i ∈ Vm,
i−m if i ∈ Vn.
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Then we have (f ◦ g)(m) = f(g(m)) = f(m+ 2) = m+ 1. But (g ◦ f)(m) =
g(f(m)) = g(m) = m + 2. Thus f ◦ g �= g ◦ f , making it a noncommutative

monoid. ✷

Remark 1. This noncommutative monoid is not a group since an endomor-

phism may not have an inverse. There exists a many-to-one endomorphism

such as

f(i) =

{
1 if i ∈ Vm,
m+ 1 if i ∈ Vn.

Therefore, this endomorphism set forms only a noncommutative monoid, not

a group.
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