PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and Properties of Chain Branched Nitrocellulose

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nitrocellulose (NC) with a semi-rigid polymer chain is one of the typical traditional cellulose derivatives. Optimization of its mechanical properties is of great significance for improving the performance of NC-based propellants. The nitrate glycerol ether cellulose (NGEC) was prepared by introducing glycerol onto the unreacted, free hydroxyl groups on NC through a three-step process (alkalization, etherification, and nitration). The effects of both the nitration process and the degree of etherification on the NGEC nitrogen content were qualitatively explored. By adding NGEC into modified double-base propellant, a standard engine grain with a diameter of 50 mm was produced by adsorption, granulation, and screw extrusion. The heat of explosion, and other physical properties of NGEC were characterized and the variation in mechanical properties and performance after storage for 6 years was investigated. The results indicated that the sensitivity was improved, and the stability was slightly decreased on increasing the nitrogen content of NGEC. Compared with NC containing similar nitrogen levels, NGEC exhibited a slightly higher heat of explosion, similar compatibility, and lower sensitivity. Additionally, the solubility of NGEC in ethanol/ether exceeded 99.7%. Through branched-chain chemical modification, the glycerol ether played a significant role in achieving internal plasticization among the cellulose chains.
Rocznik
Strony
448--476
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Institute of Technology, Zhong Guan Cun Street, Haidan District, Beijing 100081, China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Institute of Technology, Zhong Guan Cun Street, Haidan District, Beijing 100081, China
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Institute of Technology, Zhong Guan Cun Street, Haidan District, Beijing 100081, China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Institute of Technology, Zhong Guan Cun Street, Haidan District, Beijing 100081, China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Institute of Technology, Zhong Guan Cun Street, Haidan District, Beijing 100081, China
autor
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Institute of Technology, Zhong Guan Cun Street, Haidan District, Beijing 100081, China
autor
  • Xi’an North Huian Chemical Co., Ltd., Xi’an 710018, China
  • Xi’an North Huian Chemical Co., Ltd., Xi’an 710018, China
autor
  • Shanxi North Xing’an Chemical Industry Co., 118 Xinlan Road, Taiyuan 030000, China
Bibliografia
  • [1] Gaur, B.; Lochab, B.; Choudhary, V.; Varma, I.K. Energetic Binders for Solid Rocket Propellants. J. Macromol. Sci., Polym. Rev. 2003, 43(4): 505-508.
  • [2] Yetter, R.A. Progress towards Nanoengineered Energetic Materials. Proc. Combust. Inst. 2021, 38(1): 57-81.
  • [3] Cheng, T. Review of Novel Energetic Polymers and Binders – High Energy Propellant Ingredients for the New Space Race. Des. Monomers Polym. 2019, 22(1): 54-65.
  • [4] Mohan, Y.M.; Raju, M.P.; Raju, K.M. Synthesis and Characterization of GAP-PEG Copolymers. Int. J. Polym. Mater. 2005, 54(7): 651-666.
  • [5] Benchabane, M. Gas Evolution Analysis. III. Chemical Compatibility Study of GAP Based Propellant by the DVST. J. Energ. Mater. 1993, 11(2): 119-134.
  • [6] Comtois, E.; Favis, B.D.; Dubois, C. Linear Burning Rate and Erosivity Properties of Nitrocellulose Propellant Formulations Plasticized by Glycidyl Azide Polymer and Nitroglycerine. Propellants Explos. Pyrotech. 2021, 46: 494-504.
  • [7] Menke, K.; Kempa, P.B.; Keicher, T. High Energetic Composite Propellants Based on AP and GAP/BAMO Copolymers. Proc. 38th Int. Annual Conf. ICT, Karlsruhe, Germany, 2007, 82/1-10.
  • [8] Kimura, E.; Oyumi, Y. Effects of Copolymerization Ratio of BAMO/NMMO and Catalyst on Sensitivity and Burning Rate of HMX Propellant. Propellants Explos. Pyrotech. 1995, 20(4): 215-221.
  • [9] Jutier, J.-J.; de Gunzbourg, A.; Prud’Homme, R.E. Synthesis and Characterization of Poly(3,3-bis(azidomethyl)oxetane‐co‐ε‐caprolactone)s. J. Polym. Sci., Part A: Polym. Chem. 1999, 37(7):1027-1039.
  • [10] Zhai, J.X.; Jia, H.H.; Guo, X.Y. Sequence Structure, Morphology and Viscosity Behavior of 3,3‐Bis(azidomethyl)oxetane‐Tetrahydrofuran Random Copolyether. Propellants Explos. Pyrotech. 2017, 42(6): 643-648.
  • [11] Luo, Y.; Chen, P.; Zhao, F.Q.; Hu, R.Z.; Li, S.W.; Gao, Y. Kinetics and Mechanism of the Thermal Decomposition Reaction of 3,3-Bis(azidomethyl)oxetane/Tetrahydrofuran Copolymer. Chin. J. Chem. 2004, 22(11): 1219-1224.
  • [12] Robert, B.W. Method of Producing TPE Having Alternate Crystalline Structure for Use as Binders in High Energy Composition. Patent US 4806613, 1989.
  • [13] Banishevsky, V.; Zakusylo, R.; Zakusylo, D. Shear Flow of Guncotton Pulp. Cent. Eur. J. Energ. Mater. 2021, 18(1): 124-142.
  • [14] Meng, X.J.; Xiao, Z.G. Synthesis, Thermal Properties and Sensitivity of Ladderlike Nitrocellulose Grafted by Polyethylene Glycol. Propellants Explos. Pyrotech. 2018, 43(3): 300-307.
  • [15] Bagherpour, S.; Mahdavi, M.; Abedini, E. Investigation of Thermal Behavior of Energetic and Non-energetic Binders on Luminous Efficiency of High Performance Miniature Flares. Def. Technol. 2019, 15(2): 193-197.
  • [16] Jutier, J.-J.; Lemieux, E.; Prud’Homme, R.E. Miscibility of Polyester/Nitrocellulose Blends: A DSC and FTIR Study. J. Polym. Sci., Part B: Polym. Phys. 1988, 26(6): 1313-1329.
  • [17] Niehaus, M. Compounding of Glycidyl Azide Polymer with Nitrocellulose and Its Influence on the Properties of Propellants. Propellants Explos. Pyrotech. 2000, 25(5): 236-240.
  • [18] Trache, D.; Khimeche, K.; Mezroua, A.; Benziane, M. Physicochemical Properties of Microcrystalline Nitrocellulose from Alfa Grass Fibres and Its Thermal Stability. J. Therm. Anal. Calorim. 2016, 124(3): 1485-1496.
  • [19] Trache, D.; Tarchoun, A.F. Stabilizers for Nitrate Ester-based Energetic Materials and Their Mechanism of Action: A State-of-the-art Review. J. Mater. Sci. 2018, 53(1): 100-123.
  • [20] Hassan, M.A. Effect of Malonyl Malonanilide Dimers on the Thermal Stability of Nitrocellulose. J. Hazard. Mater. 2001, 88(1): 33-49.
  • [21] Sudhakar, D.; Srinivasan, K.S.V.; Joseph, K.T.; Santappa, M. Modification of Nitrocellulose by Graft Copolymerization. J. Polym. Sci. Polym. Lett. Ed. 1978, 16(9): 457-459.
  • [22] Sudhakar, D.; Srinivasan, K.S.V.; Joseph, K.T.; Santappa, M. Grafting of Methyl Methacrylate to Nitrocellulose by Ceric Ions. J. Appl. Polym. Sci. 1979, 23(10): 2923-2928.
  • [23] Nakamura, Y.; Hinojosa, O.; Arthur Jr., J.C. Graft Copolymerization of Ethyl Acrylate with GAMMA-irradiated Cotton Cellulose I and II. J. Polym. Sci., Polym. Symp. 1972, 37(1): 47-55.
  • [24] Utracki, L.A. History of Commercial Polymer Alloys and Blends (from a Perspective of the Patent Literature). Polym. Eng. Sci. 1995, 35(1): 2-17.
  • [25] Gilbert, E.E. Process for Making Azidodeoxycellulose. Patent US 4849514, 1989.
  • [26] Li, L.; Frey, M. Preparation and Characterization of Cellulose Nitrate-acetate Mixed Ester Fibers. Polymer 2010, 51(16): 3774-3783.
  • [27] Trache, D.; Tarchoun, A.F. Analytical Methods for Stability Assessment of Nitrate Esters-based Propellants. CRC Crit. Rev. Anal. Chem. 2019, 49(5): 415-438.
  • [28] Tarchoun, A.F.; Trache, D.; Klapotke, T.M.; Khimeche, K. Tetrazole-functionalized Microcrystalline Cellulose: A Promising Biopolymer for Advanced Energetic Materials. Chem. Eng. J. 2020, 400(15): 125960.
  • [29] Zhang, Y.H.; Shao, Z.Q.; Gao, K.Z.; Li, J.; Wu, X.; Wang, W.J.; Wang, F.J.; Liu, Y.H. Rheological Characteristics of Nitrate Glycerol Ether Cellulose Gel Based on Phase Separation in Ternary System. Cellulose 2014, 21(6): 4135-4143.
  • [30] Wang, F.J.; Yang, F.F.; Wang, J.N.; Shao, Z.Q. Preparation and Performance of Double Base Propellant Modified by NGEC. (in Chinese) Chin. J. Explos. Propellants 2006, 29(6): 51-53.
  • [31] Zhang, Y.D.; Shao, Z.Q.; Zhou, J.H.; Wu, B. Study on the Mechanical Properties of NGEC and NGEC Based Propellants. (in Chinese) J. Propul. Technol. 2010, 31(3): 345-350.
  • [32] Zhang, Y.D.; Shao, Z.Q.; Li, B.; Xu, S.Y.; Gu, Y.J.; Wang, Y.P. Thermal Behavior and Thermal Decomposition Mechanism of Nitrate Glycerol Ether Cellulose. (in Chinese) Chin. J. Energ. Mater. 2010, 18(5): 568-573.
  • [33] The United States Pharmacopeia (U.S.P) 21. US, 1985.
  • [34] The Test Method for Explosives. (in Chinese) GJB772A-97, 1997.
  • [35] Stability and Compatibility DTA and DSC. (in Chinese) GJB 772A-1997502.1, 1997.
  • [36] Katoh, K.; Ito, S.; Kawaguchi, S.; Higashi, E.; Nakano, K.; Ogata, Y.; Wada, Y. Effect of Heating Rate on the Thermal Behavior of Nitrocellulose. J. Therm. Anal. Calorim. 2010, 100(1): 303-308.
  • [37] Wei, X.L.; Zhou, J.H.; Zhao, G.Z.; Qu, M.Y.; Chang, J.B.; Wen, Z.W. Study on the Application of NGEC in Modified Double Base Propellant. (in Chinese) New Chem. Mater. 2020, 48(6): 232-235.
  • [38] Jelisavac, L.; Bobić, N.; Stojiljković, S.; Dimić, M.; Brzić, S.; Terzić, S. Analysis of the Aging Process of Double-base Propellants without an Organic Stabilizer. Sci. Tech. Rev. 2014, 64(3): 3-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f9c1ef9-eb76-450d-ab4d-6f3867cfaaf6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.