Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In dentistry, 3D intraoral scanners (IOSs) are gaining increasing popularity in the production of dental prostheses. However, the quality of an IOS in terms of resolution remains the determining factor of choice for the practitioner; a high resolution is a quality parameter that can reduce error in the production chain. To the best of our knowledge, the evaluation of IOS resolution is not clearly established in the literature. This study provides a simple assessment of resolution of an IOS by measuring a reference sample and highlights various factors that may influence the resolution. A ceramic tip was prepared to create a very thin object with an edge smaller than the current resolution stated by the company. The sample was scanned with microCT (micro-computed tomography) and an IOS. The resulting meshes were compared. In the mesh obtained with the IOS, the distance between two planes on the edge was approximately 100 micrometers, and that obtained with microtomography was 25 micrometers. The curvature values were 27.46 (standard deviation - SD) 14.71) μm-1 and 5.18 (SD 1.16) μm-1 for microCT and IOS, respectively. These results show a clear loss of information for objects that are smaller than 100 μm. As there is no normalized procedure to evaluate resolution of IOSs, the method that we have developed can provide a positive parameter for control of IOSs performance by practitioners.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
391--404
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Univ. Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
autor
- Laboratory of Computer Science, Robotics and Microelectronics of Montpellier, 161 Rue Ada, 34095 Montpellier, France
autor
- Laboratoire National de Métrologie et d’Essais, 1 Rue Gaston Boissier, 75724 Paris Cedex 15, France
autor
- Laboratoire National de Métrologie et d’Essais, 1 Rue Gaston Boissier, 75724 Paris Cedex 15, France
autor
- Univ. Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
autor
- Univ. Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
autor
- Univ. Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
Bibliografia
- [1] Duret, F., & Termoz, C. (1987). Method of and apparatus for making a prosthesis, especially a dental prosthesis (U.S. Patent No. 4,663,720). https://patents.google.com/patent/US4663720A/en
- [2] Ting-Shu, S., & Jian, S. (2015). Intraoral digital impression technique: a review. Journal of Prosthodontics, 24(4), 313-321. https://doi.org/10.1111/jopr.12218
- [3] Beuer, F., Schweiger, J., & Edelhoff, D. (2008). Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. British Dental Journal, 204(9), 505-511. https://doi.org/10.1038/sj.bdj.2008.350
- [4] Zhang, F., Suh, K. J., & Lee, K. M. (2016). Validity of intraoral scans compared with plaster models: an in-vivo comparison of dental measurements and 3D surface analysis. PloS One, 11(6), e0157713. https://doi.org/10.1371/journal.pone.0157713
- [5] Tsirogiannis, P., Reissmann, D. R., & Heydecke, G. (2016). Evaluation of the marginal fit of single-unit, complete-coverage ceramic restorations fabricated after digital and conventional impressions: A systematic review and meta-analysis. The Journal of Prosthetic Dentistry, 116(3), 328-335. https://doi.org/10.10167j.prosdent.2016.01.028
- [6] Almeida e Silva, J. S., Erdelt, K., Edelhoff, D., Araújo, É., Stimmelmayr, M., Vieira, L. C. C, & Güth, J. F. (2014). Marginal and internal fit of four-unit zirconia fixed dental prostheses based on digital and conventional impression techniques. Clinical Oral Investigations, 18(2), 515-523. https://doi.org/10.1007/s00784-013-0987-2
- [7] Ender, A., Attin, T, & Mehl, A. (2016). In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. The Journal of Prosthetic Dentistry, 115(3), 313-320. https://doi.org/10.1016/j.prosdent.2015.09.011
- [8] Lanis, A., & Del Canto, O. Á. (2015). The combination of digital surface scanners and cone beam computed tomography technology for guided implant surgery using 3Shape implant studio software: a case history report. International Journal of Prosthodontics. 28(2), 169-178. https://doi.org/10.11607/ijp.4148
- [9] Vasudavan, S., Sullivan, S. R., & Sonis, A. L. (2010). Comparison of intraoral 3D scanning and conventional impressions for fabrication of orthodontic retainers. Journal of Clinical Orthodontics, 44(8), 495-497. https://pubmed.ncbi.nlm.nih.gov/21105587/
- [10] Li, H., Lyu, P., Wang. Y., & Sun, Y. (2017). Influence of object translucency on the scanning accuracy of a powder-free intraoral scanner: A laboratory study. The Journal of Prosthetic Dentistry, 117(1), 93-101. https://doi.org/10.1016/j.prosdent.2016.04.008
- [11] International Organization for Standardization (2006). Dentistry - Intraoral camera (ISO Standard No. 23450:2021). https://www.iso.org/standard/75616.html
- [12] Van der Meer, W. J., Andriessen, F. S., Wismeijer. D., & Ren, Y. (2012). Application of intraoral dental scanners in the digital workflow of implantology. PloS ONE, 7(8), e43312. https://doi.org/10.1371/journal.pone.0043312
- [13] Trifković B., Budak, I., Todorović, A., Hodolić J., Puškar, T., Jevremović D., & Vukelić D. (2012). Application of replica technique and SEM in accuracy measurement of ceramic crowns. Measurement Science Review, 12(3), 90-97. https://doi.org/10.2478/v10048-012-0016-7
- [14] Patzelt, S., Emmanouilidi, A., Stampf, S., Strub, J. R., & Att, W. (2014). Accuracy of full-arch scans using intraoral scanners. Clinical Oral Investigations. 18(6), 1687-1694. https://doi.org/10.1007/s00784-013-1132-y
- [15] Trifkovic, B., Budak, I., Todorovic, A., Vukelic, D., Lazic, V., & Puskar, T. (2014). Comparative analysis on measuring performances of dental intraoral and extraoral optical 3D digitization systems. Measurement, 47, 45-53. https://doi.org/10.1016/j.measurement.2013.08.051
- [16] Nedelcu, R., Olsson, P., Nystrom, I., Ryden, J., & Thor, A. (2018). Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: A novel in vivo analysis method. Journal of Dentistry, 69, 110-118. https://doi.org/10.1016/j.jdent2017.12.006
- [17] Magnus Lilja, C. P. O., Sei, L. M., & Oberg, T. (1995). Volumetric determinations with CAD/CAM in prosthetics and orthotics: errors of measurement. Journal of Rehabilitation Research and Development, 32(2), 141-148.
- [18] Parsell, D. H., Anderson, B. C., Livingston, H. M., Rudd, J. I., & Tankersley, J. D. (2000). Effect of camera angulation on adaptation of CAD/CAM restorations. Journal of Esthetic and Restorative Dentistry, 12(2), 78-84. https://doi.org/10.1111/j.1708-8240.2000.tb00204.x
- [19] International Organization for Standardization. (2015). Dentistry - Digitizing devices for CAD/CAM systems for indirect dental restorations - Test methods for assessing accuracy (ISO Standard No. 12836:2015). https://www.iso.org/standard/68414.html
- [20] Desoutter, A., Yusuf Solieman, O., Subsol, G., Tassery, H., Cuisinier, F., & Fages, M. (2017). Method to evaluate the noise of 3D intra-oral scanner. PloS ONE, 12(8), e0182206. https://doi.org/10.1371/journal.pone.0182206
- [21] Abduo, J., & Elseyoufi, M. (2018). Accuracy of Intraoral Scanners: A Systematic Review of Influencing Factors. The European Journal of Prosthodontics and Restorative Dentistry, 26(3), 101-121. https://doi.org/10.1922/ejprd_01752abduo21
- [22] Mangano, F., Gandolti, A., Luongo, G., & Logozzo, S. (2017). Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health, 17, 149. https://doi.org/10.1186/s12903-017-0442-x
- [23] Pereira, A. L. C., do Medeiros, A. K. B., de Sousa Santos, K., de Almeida, É. O., Barbosa, G. A. S., & Carreiro, A. D. F. P. (2021). Accuracy of CAD-CAM systems for removable partial denture framework fabrication: A systematic review. The Journal of Prosthetic Dentistry, 125(2), 241-248. https://doi.org/10.1016/j.prosdent.2020.01.003
- [24] Gulati, V. (2020). Implementation of Micro CT in CAD/CAM dentistry for image processing and soft computing: a review. In Journal of Physics: Conference Series (Vol. 1432, No. 1, p. 012079). IOP Publishing. https://doi.org/10.1088/1742-6596/1432/1/012079
- [25] Menditto, A., Patriarca, M., & Magnusson, B. (2007). Understanding the meaning of accuracy, trueness and precision. Accreditation and Quality Assurance, 12(1), 45-47. https://doi.org/10.1007/s00769-006-0191-z
- [26] Schmid, B., Schindelin, J., Cardona, A., Longair, M., & Heisenberg, M. (2010). A high-level 3D visualization API for Java and ImageJ. BMC Bioinformatics, 11(1), 1-7. https://doi.org/10.1186/1471-2105-11-274
- [27] Meyer, M., Desbrun, M., Schröder, P., & Barr, A. H. (2003). Discrete differential-geometry operators for triangulated 2-manifolds. In H.-C. Hege, & K. Polthier (Eds.), Visualization and mathematics III (pp. 35-57). Springer, https://doi.org/10.1007/978-3-662-05105-4_2
- [28] Cooka, K. T., & Fasbinderb, D. J. (2012). Accuracy of CAD/CAM Crown Fit with Infrared and LED Cameras. International Journal of Computerized Dentistry, 15, 315-326. (in German)
- [29] Imburgia, M., Logozzo, S., Hauschild, U., Veronesi, G., Mangano, C., & Mangano. F. G. (2017). Accuracy of four intraoral scanners in oral implantology: a comparative in vitro study. BMC Oral Health, 77(1), 1-13. https://doi.org/10.1186/s12903-017-0383-4
Uwagi
1. 3D data acquisitions were performed using the μCT (microCT) facilities of the MRI platform member of the national infrastructure France-BioImaging supported by the French National Research Agency (ANR-10-INBS-04, "Investments for the Future"), and by the Labex CEMFB (grant ANR-10-LABX-0004) and the NUMEV (grant ANR-10-LABX-0020).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f9723b4-7ac8-430d-98b8-f782943f6d73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.