PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of organic Rankine cycles in a cogeneration system with a high-temperature gas-cooled nuclear reactor – thermodynamic analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of a parametric analysis of a high-temperature nuclear-reactor cogeneration system. The aim was to investigate the power efficiency of the system generating heat for a high-temperature technological process and electricity in a Brayton cycle and additionally in organic Rankine cycles using R236ea and R1234ze as working fluids. The results of the analyses indicate that it is possible to combine a 100 MW high-temperature gas-cooled nuclear reactor with a technological process with the demand for heat ranging from 5 to 25 MW, where the required temperature of the process heat carrier is at the level of 650◦C. Calculations were performed for various pressures of R236ea at the turbine inlet. The cogeneration system maximum power efficiency in the analysed cases ranges from ~35.5% to ~45.7% and the maximum share of the organic Rankine cycle systems in electric power totals from ~26.9% to ~30.8%. If such a system is used to produce electricity instead of conventional plants, carbon dioxide emissions can be reduced by about 216.03–147.42 kt/year depending on the demand for process heat, including the reduction achieved in the organic Rankine cycle systems by about 58.01–45.39 kt/year (in Poland).
Słowa kluczowe
Rocznik
Strony
71--87
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr., wz.
Twórcy
  • Antea Polska S.A., Dulęby 5, 40-833 Katowice, Poland
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • [1] Jun Bae S., Lee J., Ahn Y., Ik Lee J.: Preliminary studies of compact Brayton cycle performance for Small Modular High-temperature Gas-cooled Reactor system. Ann. Nucl. Energy 75(2015), 11–19.
  • [2] Reimert R., Schad M.: Process heat from modularized HTR. Nucl. Eng. Des.251(2012), 244–251.
  • [3] Yan X., Noguchi H., Sato H., Tachibana Y., Kunitomi K., Hino R.: A hybrid HTGR system producing electricity, hydrogen and such other products as water demanded in the Middle East. Nucl. Eng. Des. 271(2014), 20–29.
  • [4] Hanuszkiewicz-Drapała M., Jedrzejewski J.: Thermodynamic analysis of a cogeneration system with a high-temperature gas-cooled nuclear reactor. J. Power Technol. 95(2015), 32–41.
  • [5] Jaszczur M., Rosen M., Śliwa T., Dudek M., Pieńkowski L.: Hydrogen production using high-temperature nuclear reactors: Efficiency analysis of a combined cycle. Int. J. Hydrogen Energ. 41(2016), 19, 7861–7871.
  • [6] Alonso G., Ramirez R., del Valles E., Castillo R.: Process heat cogeneration using a high-temperature reactor. Nucl. Eng. Des. 280(2014), 137–143.
  • [7] Li PJ., Hung TC., Pei BS., Lin JR., Chieng CC., Yu GP.: A thermodynamic analysis of high-temperature gas-cooled reactor for optimal waste recovery and hydrogen production. Appl. Energ. 99(2012), 183–191.
  • [8] Luo Ch., Zhao F., Zhang N.: A novel nuclear combined power and cooling system integrating high-temperature gas-cooled reactor with ammonia-water cycle. Energ. Convers. Manage. 87(2014), 895–904.
  • [9] Fic A., Składzień J., Gabriel M.: Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle. Arch. Thermodyn. 36(2015), 1, 3–18.
  • [10] Wang Z., Zhou N., Guo J.: Performance analysis of ORC power generation system with low-temperature waste heat of aluminium reduction cell. Physics Proc. 24(2012), A, 546–553.
  • [11] Hærvig J., Sørensen K., Condra T.: Guidelines for optimal selection of working fluid for an organic Rankine cycle in relation to waste heat recovery. Energy 96(2016), 592–602.
  • [12] Vetter C., Wiemer H.-J., Kuhn D.: Comparison of sub- and supercritical organic Rankine cycles for power generation from low-temperature/low-enthalpy geothermal wells, considering specific net power output and efficiency. Appl. Therm. Eng. 51(2013), 1-2, 871–879.
  • [13] Chen H., Goswami D.Y., Stefanakos E.K.: A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew. Sust. Energ. Rev. 14(2010), 9, 3059–3067.
  • [14] Molés F., Navarro-Esbrí J., Peris B., Mota-Babiloni A., Mateu-Royo C.: R1234yf and R1234ze as alternatives to R134a in Organic Rankine Cycles for low temperature heat sources. Energy Proced. 142(2017), 1192–1198,
  • [15] Mota-Babiloni A., Navarro-Esbrí J., Molés F., Cervera A.B., Peris B., Verdú G.: A review of refrigerant R1234ze(E) recent investigations. Appl. Therm. Eng. 95(2016), 211–222.
  • [16] Wolf H.P.: Accompanying Material for the EBSILON Professional – Training Course. Steag, 2012.
  • [17] Intensity of CO2, SO2, NOx, CO and total gas emissions for electrical energy. The National Centre for Emissions Management (KOBiZE), Instytut Ochrony Środowiska Państwowy Instytut Badawczy (IOŚ PIB), Warszawa 2018 (in Polish). https://www.kobize.pl (accessed 15 Aug. 2019).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f966888-e1cc-46b5-aaf5-07c0b43d5002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.