PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of persulfate, peroxide activated persulfate and permanganate oxidation on treatability and biodegradability of leachate nanofiltration concentrate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of persulfate (PS), peroxide activated persulfate (P-PS) and permanganate (PM) oxidation processes on leachate nanofiltration (NF) concentrate treatment have been activated. Additionally, COD fractions were determined and compared before and after each oxidation process. The total COD removal efficiencies by the oxidation processes using PS, P-PS, and PM as the oxidants were determined to be 24.5%, 32.9%, and 39.5%, respectively. The biodegradable COD fraction increased from 6.37% to 9.25%, 11.51%, and 13.64% after the PS, P-PS, and PM oxidation processes, respectively. About 25%, 34%, and 46% removal efficiencies of the inert COD content of the concentrate were obtained after the PS, P-PS and PM oxidation processes, and the soluble COD fraction increased from 71.1% to 87.2%, 89.0% and 84.6% by the PS, P-PS and PM oxidation processes, respectively. Although the highest removal efficiencies were achieved by PM oxidation with the lowest operational cost, all of the processes may be suggested as efficient methods for conversion of insoluble COD into the soluble COD fraction and for inert COD removal. The results of the study showed that the PS, P-PS, and PM oxidation processes may be effectively utilized as post-treatment techniques for leachate NF concentrate treatment.
Słowa kluczowe
EN
COD   nanofiltration   NF  
PL
ChZT   nanofiltracja   NF  
Rocznik
Strony
97--108
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, 34220 Davutpasa, Esenler, Istanbul, Turkey
autor
  • Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, 34220 Davutpasa, Esenler, Istanbul, Turkey
autor
  • Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, 34220 Davutpasa, Esenler, Istanbul, Turkey
Bibliografia
  • [1] WANG H., WANG Y., LI X., SUN Y., WU H., CHEN D., Removal of humic substances from reverse osmosis (RO), and nanofiltration (NF) concentrated leachate using continuously ozone generation-reaction treatment equipment, Waste Manage., 2016, 56, 271–279.
  • [2] HE X.S., XI B.D., GAO R.T., WANG L., MA Y., CUI D.Y., TAN W.B., Using fluorescence spectroscopy coupled with chemometric analysis to investigate the origin, composition, and dynamics of dissolved organic matter in leachate-polluted groundwater, Environ. Sci. Pollut. R., 2015, 22 (11), 8499–8506.
  • [3] AROLA K., KALLIOINEN M., REINIKAINEN S.P., HATAKKA H., MÄNTTÄRI M., Advanced treatment of membrane concentrate with pulsed corona discharge, Sep. Purif. Technol., 2018, 198, 121–127.
  • [4] LONG Y., XU J., SHEN D., DU Y., FENG H., Effective removal of contaminants in landfill leachate membrane concentrates by coagulation, Chemosphere, 2017, 167, 512–519.
  • [5] HUNCE S.Y., AKGUL D., DEMIR G., MERTOGLU B., Solidification/stabilization of landfill leachate concentrate using different aggregate materials, Waste Manage., 2012, 32, 1394–1400.
  • [6] LI X.Y., ZHANG L.W., WANG C.W., Review of disposal of concentrate streams from nanofiltration (NF) or reverse osmosis (RO) membrane process, Adv. Mater. Res., 2012, 518–523, 3470–3475.
  • [7] PEREZ-GONZALEZ A., URTIAGA A.M., IBANEZ R., ORTIZ I., State of the art, and review on the treatment technologies of water reverse osmosis concentrates, Water Res., 2012, 46, 267–283.
  • [8] CALABRÒ P.S., SBAFFONI S., ORSI S., GENTILI E., MEONI C., The landfill reinjection of concentrated leachate: Findings from a monitoring study at an Italian site, J. Hazard. Mater., 2010, 181, 962–968.
  • [9] XU J., LONG Y., SHEN D., FENG H., CHEN T., Optimization of Fenton treatment process for degradation of refractory organics in pre-coagulated leachate membrane concentrates, J. Hazard. Mater., 2017, 323, 674–680.
  • [10] YANG S., WANG P., YANG X., WEI G., ZHANG W., SHAN L., A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation, J. Environ. Sci., 2009, 21, 1175–1180.
  • [11] ABDULLAH N., AZIZ H.A., YUSUF N.N.A.N., Umar M., Abu Amr S.S., Potential of KMnO4, and H2O2 in treating semi-aerobic landfill leachate, Appl. Water Sci., 2014, 4, 303–309.
  • [12] HILLES A.H., ABU AMR S.S., HUSSEIN R.A., ARAFA A.I., EL-SEBAIE O.D., Effect of persulfate, and persulfate/H2O2 on biodegradability of an anaerobic stabilized landfill leachate, Waste Manage., 2015, 44, 172–177.
  • [13] APHA, Standard methods for the examination of water, and wastewater, American Public Health Association (APHA), 21st Ed., Washington DC, 2005.
  • [14] Abu Amr S.S., Aziz H.A., Adlan M.N., Alkasseh J.M.A., Effect of ozone, and ozone/persulfate processes on biodegradable, and soluble characteristics of semiaerobic stabilized leachate, Environ. Prog. Sustain., 2014, 33, 184–191.
  • [15] WANG G.S., HSIEH S.T., HONG C.S., Destruction of humic acid in water by UV light-catalyzed oxidation with hydrogen peroxide, Water Res., 2000, 34, 3882–3887.
  • [16] CASEY Y.D., EZYSKE M., Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants, and ammonia in landfill leachate, Water Res., 2011, 45, 6189–6194
  • [17] GAO Y., GAO N., DENG Y., YANG Y., MA Y., Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water, Chem. Eng. J., 2012, 195–196, 248–253.
  • [18] ABU AMR S.S., AZIZ H.A., ADLAN M.N., AZIZ S.Q., Effect of ozone, and ozone/fenton in the advanced oxidation process on biodegradable characteristics of semi-aerobic stabilized leachate, Clean – Soil, Air, Water, 2013, 41 (2), 148–152.
  • [19] HILLES A.H., ABU AMR S.S., HUSSEIN R.A., EL-SEBAIE O.D., ARAFA A.I., Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment, J. Environ. Manage., 2016, 166, 493–498.
  • [20] OCAMPO A.M., Persulfate activation by organic compounds, Washington State University, 2009.
  • [21] FURMAN O.S., TEEL A.L., Ahmad M., Merker M.C., Watts, R.J., Effect of basicity on persulfate reactivity, J. Environ. Eng., 2011, 137, 4, 241–247.
  • [22] ABU AMR S.S., AZIZ H.A., BASHIR M.J.K., AZIZ S.Q., ALSLAIBI T.M., Comparison, and optimization of ozone-based advanced oxidation processes in the treatment of stabilized landfill leachate, J. Eng. Res. Technol., 2016, 2, 122–130.
  • [23] Reviews on radical reactions: radicals in organic synthesis, M.P. Sibi, P. Renaud (Eds.), Wiley, New York 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f942cfa-7750-4d32-b2b5-0324cd02501b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.