PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mieszanki betonowe stosowane w technologii druku trójwymiarowego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Concrete mixtures applied in three-dimensional printing technology
Języki publikacji
PL
Abstrakty
PL
W niniejszej pracy dokonano przeglądu literatury z zakresu mieszanek i zapraw betonowych stosowanych w druku trójwymiarowym. Przegląd literatury przygotowano z zachowaniem chronologii pojawienia się danej publikacji (daty publikacji). Na podstawie przeprowadzonego przeglądu dokonano tabelarycznego zestawienia receptur mieszanek wykorzystywanych w wydrukach trójwymiarowych (3D). Przedstawiony przegląd literatury z zakresu mieszanek i zapraw betonowych stosowanych w druku trójwymiarowym można traktować jako wstęp do szczegółowych badań związanych z projektowaniem nowych typów mieszanek i receptur.
EN
This paper presented a state-of-the-art review of the literature on the subject of concrete mixes and mortars used in 3D (three-dimensional) printable concrete. The literature review is prepared by the chronology of the publication (date of publication). Based on the performed state-of-the-art review, a tabular list of concrete mix recipes used in three-dimensional printing technology is given. The presented literature review in the field of concrete mixtures and mortars used in three-dimensional printing can be treated as an introduction to detailed research related to the design of new types of mixtures.
Czasopismo
Rocznik
Strony
20--28
Opis fizyczny
Bibliogr. 40 poz., il., tab.
Twórcy
  • Wydział Inżynierii Lądowej i Środowiska, Politechnika Gdańska
Bibliografia
  • [1] Ambroziak A., Ziolkowski P., Concrete compressive strength under changing environmental conditions during placement processes, Materials (Basel) 13, 2020, https://doi.org/10.3390/ma13204577
  • [2] Boulekbache B., Hamrat M., Chemrouk M., Amziane S., Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material, Construction and Building Materials 24, 2010, str. 1664-1671, https://doi.org/10.1016/j.conbuildmat.2010.02.025
  • [3] Libre N. A., Shekarchi M., Mahoutian M., Soroushian P., Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice, Construction and Building Materials 25, 2011, str. 2458-2464, https://doi.org/10.1016/j.conbuildmat.2010.11.058.
  • [4] Lim S., Buswell R. A., Le T. T., Austin S. A., Gibb A. G. F., Thorpe T., Developments in construction-scale additive manufacturing processes, Automation in Construction, 21, 2012, str. 262-268, https://doi.org/10.1016/j.autcon.2011.06.010
  • [5] Le T. T., Austin S. A., Lim S., Buswell R. A., Gibb A. G. F., Thorpe T., Mix design and fresh properties for high-performance printing concrete, Materials and Structures 45, 2012, str. 1221-1232, https://doi.org/10.1617/s11527-012-9828-z
  • [6] Gosselin C., Duballet R., Roux P., Gaudillière N., Dirrenberger J., Morel P., Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders, Materials and Design 100, 2016, str. 102-109, https://doi.org/10.1016/j.matdes.2016.03.097
  • [7] Nerella V. N., Krause M., Näther M., Mechtcherine V., Studying printability of fresh concrete for formwork free Concrete on-site 3D Printing technology technology (CONPrint3D). Rheol. Messungen an Baustoffen, Regensburg, Germany, 2016, str. 236-246
  • [8] Panda B., Chandra Paul S., Jen Tan M., Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material, Materials Letters 209, 2017, str. 146-149, https://doi.org/10.1016/j.matlet.2017.07.123
  • [9] Kazemian A., Yuan X., Cochran E., Khoshnevis B., Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture, Construction and Building Materials 145, 2017, str. 639-647, https://doi.org/10.1016/j.conbuildmat.2017.04.015
  • [10] Hambach M., Volkmer D., Properties of 3D-printed fiber-reinforced Portland cement paste, Cement and Concrete Composites 79, 2017, str. 62-70, https://doi.org/10.1016/j.cemconcomp.2017.02.001
  • [11] Ponikiewski T., Wrzecion K., Augustyn J., Projektowanie betonów w technologii druku 3D, modyfikowanych wybranymi domieszkami chemicznymi, Dni Betonu 2018, Wisła, str. 385-400
  • [12] Paul S. C., Tay Y. W. D., Panda B., Tan M. J., Fresh and hardened properties of 3D printable cementitious materials for building and construction, Archives of Civil and Mechanical Engineering 18, 2018, str. 311-319, https://doi.org/10.1016/j.acme.2017.02.008
  • [13] Pacewicz K., Sobotka A., Gołek L., Characteristic of materials for the 3D printed building constructions by additive printing, MATEC Web of Conferences 222, 2018, str. 01013, https://doi.org/10.1051/matecconf/201822201013
  • [14] Marchment T., Sanjayan J., Xia M., Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification, Materials and Design 169, 2019, str. 107684, https://doi.org/10.1016/j.matdes.2019.107684
  • [15] Zhang Y., Zhang Y., Liu G., Yang Y., Wu M., Pang B. Fresh properties of a novel 3D printing concrete ink., Construction and Building Materials 174, 2018, str. 263-271, https://doi.org/10.1016/j.conbuildmat.2018.04.115
  • [16] Panda B., Tan M. J., Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing, Ceram Int 44, 2018, str. 10258-10265, https://doi.org/10.1016/j.ceramint.2018.03.031
  • [17] Kruger J., Zeranka S., van Zijl G., An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete, Construction and Building Materials 224, 2019, str. 372-386,. https://doi.org/10.1016/j.conbuildmat.2019.07.078
  • [18] Mechtcherine V., Nerella V.N., Will F., Näther M., Otto J., Krause M., Large-scale digital concrete construction – CONPrint3D concept for on-site, monolithic 3D-printing, Automation in Construction 107, 2019, str. 102933, https://doi.org/10.1016/j.autcon.2019.102933
  • [19] Nerella V. N., Hempel S., Mechtcherine V., Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing, Construction and Building Materials 205, 2019, str. 586-601, https://doi.org/10.1016/j.conbuildmat.2019.01.235
  • [20] Zhang C., Hou Z., Chen C., Zhang Y., Mechtcherine V., Sun Z., Design of 3D printable concrete based on the relationship between flowability of cement paste and optimum aggregate content, Cement and Concrete Composites 104, 2019, str. 103406, https://doi.org/10.1016/j.cemconcomp.2019.103406
  • [21] Malaeb Z., AlSakka F., Hamzeh F., 3D Concrete Printing: Machine Design, Mix Proportioning and Mix Comparison Between Different Machine Setups, 3D Concrete Printing Technology, Elsevier; 2019, str. 115-136, https://doi.org/10.1016/B978-0-12-815481-6.00006-3
  • [22] Xu J., Ding L., Cai L., Zhang L., Luo H., Qin W., Volume-forming 3D concrete printing using a variable-size square nozzle, Automatic in Construction 104, 2019, str. 95-106, https://doi.org/10.1016/j.autcon.2019.03.008
  • [23] Rahul A. V., Santhanam M., Evaluating the printability of concretes containing lightweight coarse aggregates, Cement and Concrete Composites 109, 2020, str. 103570, https://doi.org/10.1016/j.cemconcomp.2020.103570
  • [24] Wang L., Tian Z., Ma G., Zhang M., Interlayer bonding improvement of 3D printed concrete with polymer modified mortar: Experiments and molecular dynamics studies, Cement and Concrete Composites 110, 2020, str. 103571, https://doi.org/10.1016/j.cemconcomp.2020.103571
  • [25] Marchment T., Sanjayan J., Mesh reinforcing method for 3D Concrete Printing, Automation in Construction 109, 2020, str. 102992, https://doi.org/10.1016/j.autcon.2019.102992
  • [26] Moelich G. M., Kruger J., Combrinck R., Plastic shrinkage cracking in 3D printed concrete, Composites Part B Engineering 200, 2020, str. 108313, https://doi.org/10.1016/j.compositesb.2020.108313
  • [27] Yu S., Xia M., Sanjayan J., Yang L., Xiao J., Du H., Microstructural characterization of 3D printed concrete, Journal of Building Engineering 2021;44:102948, https://doi.org/10.1016/j.jobe.2021.102948
  • [28] Moelich G. M., Kruger J., Combrinck R., Modelling the interlayer bond strength of 3D printed concrete with surface moisture, Cement and Concrete Research 150, 2021, str. 106559, https://doi.org/10.1016/j.cemconres.2021.106559
  • [29] Zhu B., Nematollahi B., Pan J., Zhang Y., Zhou Z., Zhang Y., 3D concrete printing of permanent formwork for concrete column construction, Cement and Concrete Composites 121, 2021, str. 104039, https://doi.org/10.1016/j.cemconcomp.2021.104039
  • [30] Federowicz K., Techman M., Skibicki S., Chougan M., El-Khayatt A. M., Saudi H. A., et al., Development of 3D printed heavyweight concrete (3DPHWC) containing magnetite aggregate, Materials and Design 233, 2023, str. 112246, https://doi.org/10.1016/j.matdes.2023.112246
  • [31] Dvorkin L., Marchuk V., Mróz K., Maroszek M., Hager I., Energy-Efficient Mixtures Suitable for 3D Technologies, Appllied Sciences 14, 2024, str. 3038, https://doi.org/10.3390/app14073038
  • [32] Dodziuk H., Perspektywy rozwoju druku 3D, Napędy i Sterowanie 22, 2020, str. 38-44
  • [33] Jaworska N., Podsiadło H., Technologia druku 3D jako szansa dla środowiska naturalnego, Acta Poligraphica 14, 1991, str. 55-70
  • [34] Soltan D. G., Li V. C., A self-reinforced cementitious composite for building-scale 3D printing, Cement and Concrete Composites 90, 2018, str. 1-13, https://doi.org/10.1016/j.cemconcomp.2018.03.017
  • [35] Kruger J., Zeranka S., van Zijl G., 3D concrete printing: A lower bound analytical model for buildability performance quantification, Automaticon in Construction 106, 2019, str. 102904. https://doi.org/10.1016/j.autcon.2019.102904
  • [36] Zhang Y., Zhang Y., She W., Yang L., Liu G., Yang Y., Rheological and harden properties of the high-thixotropy 3D printing concrete, Construction Building Materials 201, 2019, str. 278-85, https://doi.org/10.1016/j.conbuildmat.2018.12.061
  • [37] Rahul A. V., Santhanam M., Meena H., Ghani Z., 3D printable concrete: Mixture design and test methods, Cement and Concrete Composites 97, 2019, str. 13-23, https://doi.org/10.1016/j.cemconcomp.2018.12.014
  • [38] Yuan Q., Li Z., Zhou D., Huang T., Huang H., Jiao D., et al., A feasible method for measuring the buildability of fresh 3D printing mortar, Construction Building Materials 227, 2019, str. 116600, https://doi.org/10.1016/j.conbuildmat.2019.07.326
  • [39] Chen Y., Jansen K., Zhang H., Romero Rodriguez C., Gan Y., Çopuroğlu O., et al., Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materials: An experimental and numerical study, Construction Building Materials 262, 2020, str. 120094, https://doi.org/10.1016/j.conbuildmat.2020.120094
  • [40] Ma G., Li Y., Wang L., Zhang J., Li Z., Real-time quantification of fresh and hardened mechanical property for 3D printing material by intellectualization with piezoelectric transducers, Construction Building Materials 241, 2020, str. 117982, https://doi.org/10.1016/j.conbuildmat.2019.117982
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f910992-0d2f-4282-af23-d21ec88c9c61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.