Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The presented work is devoted to the improvement of spur gears of the reduction drive for metal-cutting machines according to the criterion of load capacity. A feature of this article is the creation of such a constructive solution, which is aimed at finding a compromise between reducing contact loads in the engagement zone and increasing the complexity and labour intensity of the manufacturing gears process. A procedure for accelerated creation of 3D models of a gear drive and its components using the specialized software application “Shafts and Mechanical Transmissions-3D” in the environment of integrated CAD system KOMPAS-3D is proposed. A study of a new cylindrical gear transmission design with a longitudinal generatrix of axoids, confirmed by the corresponding patent solution is realized. A calculation form for the practical design and manufacture of a new design cylindrical gear is proposed.
Czasopismo
Rocznik
Tom
Strony
87--93
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
- Volodymyr Dahl East Ukrainian National University, Department of Machinery Engineering and Applied Mechanics, 59-a Central pr., Severodonetsk, 93400
autor
- Volodymyr Dahl East Ukrainian National University, Department of Machinery Engineering and Applied Mechanics, 59-a Central pr., Severodonetsk, 93400
Bibliografia
- 1. Yakovenko I, Permyakov A, Naboka O, Prihodko O, Havryliuk Y. Parametric Optimization of Technological Layout of Modular Machine Tools. In: Ivanov V. et al eds. Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. 2020. https://doi.org/10.1007/978-3-030-50794-7_9
- 2. Kushnir E, Portman V, Aguilar A. et al. Layout evaluation at earlier stages of machine tool design: form-shaping function-based approach. Int J Adv Manuf Technol. 2017; 90: 3333-3346. https://doi.org/10.1007/s00170-016-9667-0
- 3. Krol O, Sokolov V. Parametric Modeling of transverse layout for machine tool gearboxes. In: Gapiński B, Szostak M, Ivanov V. (eds) Advances in Manufacturing II. Lecture Notes in Mechanical Engineering. Springer, Cham 2019; 4: 122-130. https://doi.org/10.1007/978-3-030-16943-5_11
- 4. Saravanakumar R, Nishanth M, Govindarajan C, Vattikuti C. Fabrication and usage of multipurpose mechanical machine using scotch yoke mechanism September. IOP Conference Series. Materials Science and Engineering. 2018; 402(1): 012188. https://doi.org/10.1088/1757-899X/402/1/012188
- 5. Srivastava Sharad, Srivastava Shivam, Khatri C.B. Multi-Function Operating Machine: A Conceptual Model. IOSR Journal of Mechanical and Civil Engineering 2014; 14 (1): 69-75.
- 6. Avramova TM, Bushuev VV, Gilova, L.Ya. Handbook on metal-cutting machine tools. Moscow: Mechanical Engineering. 2012. Russian.
- 7. Gaiser U. 5-axis gear manufacturing gtts practical. Geartechnology 2017; March/April: 32-34.
- 8. Bjionowski B. A practical approach for modelling a bevel gear Geartechnology 2015; March/April: 68-75.
- 9. Krol O, Sokolov V. Parametric Modeling of Gear Cutting Tools. In: Gapiński B., Szostak M., Ivanov V. (eds) Advances in Manufacturing II. Lecture Notes in Mechanical Engineering. Springer, Cham 2019; 4: 3-11. https://doi.org/10.1007/978-3-030-16943-5_1
- 10. Pavlenko I, Liaposhchenko O, Ochowiak M, Olszewski R, Demianenko M, Starynskyi O, Ivanov V, Yanovych V, Włodarczak S, Doligalski M. ThreeDimensional Mathematical Model of the Liquid Film Downflow on a Vertical Surface. Energies 2020; 13(8): 1938. https://doi.org/10.3390/en13081938
- 11. Kubo A, Ueda A. Gear geometry as a function of the production method. The Proceedings of the JSME international conference on motion and power transmission; 2017; 51: 27-44 https://doi.org/10.1299/jsmeimpt.2017.02-06
- 12. Amendola JB, Amendola JB. III, Yatzook D. Longitudinal tooth contact pattern shift. Geartechnology. 2012; May: 63-67.
- 13. Malashchenko V, Strilets O, Strilets V, Kłysz S. Investigation of the energy effectiveness of multistage differential gears when the speed is changed by the carrier. Diagnostyka. 2019; 20(4): 57-64. https://doi.org/10.29354/diag/112397
- 14. Brecher C, Fey M., Daniels M. Modeling of PositionTool- and Workpiece-Dependent Milling Machine Dynamics. High Speed Mach. 2016; 2: 15-25. https://doi.org/10.1515/hsm-2016-0002
- 15. Kong J, Cheng X. Modal analysis of CNC lathe’s spindle based on finite element. Advances in Engineering Research (AER). 2017; 148: 318-321. https://doi.org/10.2991/wartia-17.2017.60
- 16. Krol O, Porkuian O, Sokolov V, Tsankov P. Vibration stability of spindle nodes in the zone of tool equipment optimal parameters. Comptes rendus de l’Acade'mie bulgare des Sciences. 2019; 72(11): 1546-1556. https://doi.org/10.7546/CRABS.2019.11.12
- 17. Pavlenko I, Simonovskiy V, Demianenko M. Dynamic analysis of centrifugal machines rotors supported on ball bearings by combined application of 3D and beam finite element models. IOP Conf. Ser.: Mater. Sci. Eng. 2017; 233: 012053. https://doi.org/10.1088/1757-99X/233/1/012053
- 18. Petrakova E, Sumatokhin V. Development algorithm for creating parametric 3D models, controlled by MathCad calculations, to study parameters of enclosed gear housing. In: Radionov A, Kravchenko O, Guzeev V, Rozhdestvenskiy Y. (eds) Proceedings of the 5th International Conference on Industrial Engineering. ICIE 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. 2020; 473-483. https://doi.org/10.1007/978-3-030-22041-9_51
- 19. Malukh V. We test Artisan Rendering for KOMPAS-3D. Isicad. 2018; 170: 10.
- 20. Syzrantsev V, Pazyak A. Contact strength calculation of straight bevel precessional gear with small shaft angle. In: Radionov A, Kravchenko O, Guzeev V, Rozhdestvenskiy Y. (eds) Proceedings of the 5th International Conference on Industrial Engineering. ICIE 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. 2020; 197-204. https://doi.org/10.1007/978-3-030- 22041-9_23
- 21. Shevchenko SV, Mukhovaty OA, Krol OS. Nonclereance worm gear. Patent of Ukraine 2015; 95715.
- 22. Kotliar A, Gasanov M, Basova Y, Panamariova O, Gubskyi S. Ensuring the reliability and performance criterias of crankshafts. Diagnostyka. 2019; 20(1): 23-32. https://doi.org/10.29354/diag/99605
- 23. Syzyi Y, Ushakov O, Slipchenko S, Basova Y, Ivanova M. Simulation of the contact temperature in the cylindrical plunge grinding process. Diagnostyka. 2020;21(2):77-86. https://doi.org/10.29354/diag/122532
- 24. Antsupov AV, Slobodianskii MG, Antsupov VA. Analytical model of wear-out failures in spur gears of external gearing. In: Radionov A, Kravchenko O, Guzeev V, Rozhdestvenskiy Y. (eds) Proceedings of the 5th International Conference on Industrial Engineering. ICIE 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. 2020; 75-81.https://doi.org/10.1007/978-3-030-22041-9_9
- 25. Błażej R, Sawicki M, Konieczna M, Kozłowski T, Kirjanów A. Automatic analysis of themrograms as a means for estimating technical of a gear system, Diagnostyka. 2016; 17(2): 43-48.
- 26. Mba CU, Marchesiello S, Fasana A, Garibaldi L. On the use of stochastic resonance for fault detection in spur gearboxes. Diagnostyka. 2017;18(3):3-13.
- 27. Sokolov V, Krol O, Stepanova O. Choice of correcting link for electrohydraulic servo drive of technological equipment. In: Ivanov V. et al. (eds) Advances in Design, Simulation and Manufacturing II. DSMIE 2019, LNME, Springer, Cham. 2020; 4: 702-710. https://doi.org/10.1007/978-3-030-22365-6_70
- 28. Sokolov V, Krol O, Stepanova O. Nonlinear simulation of electrohydraulic technological equipment. J. Physics: Conf. Series. VSPID-20182019; 1278: 012003. https://doi.org/10.1088/1742-6596/1278/1/012003
- 29. Berlato F, D’elia G, Battarra M, Dalpiaz G. Condition monitoring indicators for pitting detection in planetary gear units. Diagnostyka. 2020; 21(1): 3-10. https://doi.org/10.29354/diag/116079
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f8d744b-8bd4-4469-b760-b0c0b937c2c9