PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the seismic structure of the Earth based on joint analysis of gravimetric and seismometric data – a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The evolution of the Earth’s surface is driven by external and internal forces, the latter of which can only be studied indirectly. Knowledge about the structure of the Earth’s interior is very important for modeling and predicting the processes occurring at the surface. This study presents a new concept of joint analysis of the gravimetric and seismometric recordings of earthquakes for determining the seismic structure of the Earth down to the depth of 1250 km. The proposed method allows the use of gravimetric data without the known full transfer function of the instrument. Group velocity dispersion curves of the fundamental mode of Rayleigh waves up to the period of 550 s are measured based on the joint analysis of the recordings of superconducting gravimeter and broadband seismometers operating at the same location in five testing sites in Europe, allowing for the exploration of a broader response for incoming seismic waves. Averaged dispersion curves for earthquakes around the world for each site are inverted by the weighted linear inversion and Monte Carlo methods to estimate the distribution of shear-wave seismic velocity in the Earth’s mantle. A comparison of the deterministic and probabilistic inversion methods can excellently demonstrate surface waves’ ability to determine the Earth’s mantle structure. The inversion results are compared with the global ak135 seismic model (Kennett et al. 1995) to verify the proposed method.
Wydawca
Rocznik
Strony
5--22
Opis fizyczny
Bibliogr. [37] poz., rys., tab., wykr.
Twórcy
  • Polish Geological Institute – National Research Institute, Warsaw, Poland
  • Institute of Geodesy and Cartography, Warsaw, Poland
  • Institute of Geodesy and Cartography, Warsaw, Poland
  • Central Office of Measures, Warsaw, Poland
  • Institute of Geodesy and Cartography, Warsaw, Poland
  • Accenture, Applied Intelligence, USA
Bibliografia
  • Bodin T., Sambridge M., Tkalčić H., Arroucau P., Gallagher K. & Rawlinson N., 2012. Transdimensional inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research, 117(B2), B02301. https://doi.org/10.1029/2011JB008560.
  • Bormann P., Engdahl E. & Kind R., 2012. Seismic Wave Propagation and Earth Models. [in:] Bormann P. (ed.), New Manual of Seismological Observatory Practice 2 (NMSOP-2), Deutsches GeoForschungsZentrum GFZ, Potsdam, 15–27. https://doi.org/10.2312/GFZ.NMSOP-2_ch2.
  • Charles University in Prague (Czech), Institute of Geonics, Institute of Geophysics, Academy of Sciences of the Czech Republic, Institute of Physics of the Earth Masaryk University (Czech) & Institute of Rock Structure and Mechanics, 1973. Czech Regional Seismic Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/CZ.
  • Debayle E. & Ricard Y., 2012. A global shear velocity model of the upper mantle from fundamental and higher Rayleigh mode measurements. Journal of Geophysical Research, 117, B10308. https://doi.org/10.1029/2012JB009288.
  • Dercourt J., Zonenshain L.P., Ricou L.-E., Kazmin V.G., Le Pichon X., Knipper A.L., Grandjacquet C., Sbortshikov I.M., Geyssant J., Lepvrier C., Pechersky D.H., Boulin J., Sibuet J.-C., Savostin L.A., Sorokhtin O., Westphal M., Bazhenov M.L., Lauer J.P. & Biju-Duval B., 1986. Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the LIAS. Tectonophysics, 123(1–4), 241–315. https://doi.org/10.1016/0040-1951(86)90199-X.
  • Dykowski P., Sekowski M. & Krynski J., 2018. Superconducting gravimeter data from Borowa Gora – Level 1. GFZ Data Services. https://doi.org/10.5880/igets.bg.l1.001.
  • Dziewonski A. & Anderson D., 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297–356. https://doi.org/10.1016/0031-9201(81)90046-7.
  • Dziewonski A., Bloch S. & Landisman M., 1969. A technique for the analysis of transient seismic signals. Bulletin of the Seismological Society of America, 59(1), 427–444. https://doi.org/10.1785/BSSA0590010427.
  • Federal Institute for Geosciences and Natural Resources (BGR), 1976. German Regional Seismic Network (GRSN). Bundesanstalt für Geowissenschaften und Rohstoffe. https://doi.org/10.25928/mbx6-hr74.
  • Gaudot I., Beucler É., Mocquet A., Drilleau M., Haugmard M., Bonnin M., Aertgeerts G. & Leparoux D., 2021. 3-D crustal VS model of western France and the surrounding regions using Monte-Carlo inversion of seismic noise cross-correlation dispersion diagrams. Geophysical Journal International, 224(3), 2173–2188. https://doi.org/10.1093/gji/ggaa552.
  • Herrmann R.B., 2013. Computer programs in seismology: An evolving tool for instruction and research. Seismological Research Letters, 84(6), 1081–1088. https://doi.org/10.1785/0220110096.
  • Herrmann R.B. & Ammon C.J., 2004. Surface waves, receiver functions and crustal structure, Computer Programs in seismology: version 3.30. Saint Louis University.
  • Hunter J., 2007. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55.
  • Karkowska K. & Wilde-Piórko M., 2022. Determination of the Earth’s structure based on intermediate-period surface wave recordings of tidal gravimeters: A case study. Earth, Planets and Space, 74, 150. https://doi.org/10.1186/s40623-022-01712-4.
  • Karkowska K., Wilde-Piórko M. & Dykowski P., 2022. Analysis of earthquakes recordings of tidal gravimeters in the period range of 10–1000 s. Acta Geodynamica et Geomaterialia, 19(1), 79–92. https://doi.org/10.13168/AGG.2021.0043.
  • Keilis-Borok V.I., 1989. Recording, identification, and measurement of surface wave parameters. [in:] Keilis-Borok V.I. (ed.), Seismic Surface Waves in a Laterally Inhomogeneous Earth, Modern Approaches in Geophysics, 9, Kluwer Academic Publishers, Dordrecht, 131–182. https://doi.org/10.1007/978-94-009-0883-3_5.
  • Kennett B.L.N., Engdahl E.R. & Buland R., 1995. Constraints on seismic velocities in the Earth from travel times. Geophysical Journal International, 122(1), 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x.
  • Kolínský P., Valenta J. & Málek J., 2014. Velocity model of the Hronov-Poříčí Fault Zone from Rayleigh wave dispersion. Journal of Seismology, 18(3), 617–635. https://doi.org/10.1007/s10950-014-9433-4.
  • Köhler A., Maupin V. & Balling N., 2015. Surface wave tomography across the Sorgenfrei–Tornquist Zone, SW Scandinavia, using ambient noise and earthquake data. Geophysical Journal International, 203(1), 284–311. https://doi.org/10.1093/gji/ggv297.
  • Krischer L., Megies T., Barsch R., Beyreuther M., Lecocq T., Caudron C. & Wassermann J., 2015. ObsPy: a bridge for seismology into the scientific Python ecosystem. Computational Science & Discovery, 8(1), 014003. https://doi.org/10.1088/1749-4699/8/1/014003.
  • Laske G., Masters G., Ma Z. & Pasyanos M., 2013. Update on CRUST1.0 – A 1-degree Global Model of Earth’s Crust. [in:] Geophysical Research Abstracts. Vol. 15: EGU General Assembly 2013, 7–12 April, 2013, Vienna, Austria, EGU2013-2658.
  • Ludwig W.J., Nafe J.E. & Drake C.L., 1970. Seismic refraction. [in:] Maxwell A.E. (ed.), The Sea: Ideas and Observations on Progress in the Study of the Seas. Volume 4: New Concepts of Sea Floor Evolution. Part One, Wiley-Interscience, New York, 53–84.
  • Lyu Ch., Pedersen H.A., Paul A., Zhao L., Solarino S. & CIFALPS Working Group, 2017. Shear wave velocities in the upper mantle of the Western Alps: New constraints using array analysis of seismic surface waves. Geophysical Journal International, 210(1), 321–331. https://doi.org/10.1093/gji/ggx166.
  • Martínez M.D., Lana X., Caselles O., Canas J.A. & Pujades L., 2005. Elastic-anelastic regional structures for the Iberian Peninsula obtained from a Rayleigh wave tomography and a causal uncoupled inversion. Pure and Applied Geophysics, 162(12), 2321–2353. https://doi.org/10.1007/s00024-005-2778-4.
  • Pálinkáš V., Kostelecký J. & Vaľko M., 2020. Superconducting gravimeter data from Pecný – Level 1. GFZ Data Services. https://doi.org/10.5880/igets.pe.l1.001.
  • Pasyanos M.E., Masters T.G., Laske G. & Ma Z., 2014. LITHO1.0: An updated crust and lithospheric model of the Earth. Journal of Geophysical Research, 119(3), 2153–2173. https://doi.org/10.1002/2013JB010626.
  • Pawlewicz M.J., Williams A.J., Walden S.M. & Steinshouer D.W., 2003. Generalized Geology of Europe including Turkey (geo4_2l). U.S. Geological Survey data release, https://doi.org/10.5066/P9C8ZY5Q.
  • Peter D., Boschi L., Deschamps F., Fry B., Ekström G. & Giardini D., 2008. A new finite-frequency shear-velocity model of the European-Mediterranean region. Geophysical Research Letters, 35(16), L16315. https://doi.org/10.1029/2008GL034769.
  • Pharaoh T.C., 1999. Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): A review. Tectonophysics, 314(1–3), 17–41. https://doi.org/10.1016/S0040-1951(99)00235-8.
  • QGIS.org, 2020. QGIS Geographic Information System. QGIS Association. http://www.qgis.org.
  • RESIF, 1995. RESIF-RLBP French Broad-band network, RESIF-RAP strong motion network and other seismic stations in metropolitan France [Data set]. RESIF – Réseau Sismologique et géodésique Français. https://doi.org/10.15778/RESIF.FR.
  • Romanowicz B., 2002. Inversion of surface waves: a review. [in:] Lee W.H.K., Jennings P., Kisslinger C., Kanamori H. (eds.), International Handbook of Earthquake & Engineering Seismology, Part A, Academic Press, Cambridge, 149–173. https://doi.org/10.1016/S0074-6142(02)80214-5.
  • San Fernando Royal Naval Observatory (ROA), Universidad Complutense De Madrid (UCM), Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ), Universidade De Évora (UEVORA, Portugal), & Institute Scientifique of Rabat (ISRABAT, Morocco), 1996. The Western Mediterranean BB seismic Network [Data set]. Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.14470/JZ581150.
  • Schivardi R. & Morelli A., 2011. EPmantle: A 3-D transversely isotropic model of the upper mantle under the European Plate. Geophysical Journal International, 185(1), 469–484. https://doi.org/10.1111/j.1365-246X.2011.04953.x.
  • Shapiro N.M., Gorbatov A.V., Gordeev E. & Dominguez J., 2000. Average shear-wave velocity structure of the Kamchatka peninsula from the dispersion of surface waves. Earth, Planets and Space, 52(9), 573–577. https://doi.org/10.1186/BF03351665.
  • Soomro R.A., Weidle C., Cristiano L., Lebedev S., Meier T. & PASSEQ Working Group, 2016. Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broad-band, interstation measurements. Geophysical Journal International, 204(1), 517–534. https://doi.org/10.1093/gji/ggv462.
  • Wziontek H., Wolf P., Nowak I., Richter B., Rülke A. & Wilmes H., 2017. Superconducting gravimeter data from Wettzell – Level 1. GFZ Data Services. https://doi.org/10.5880/igets.we.l1.001.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f887e65-93f6-422d-9452-eeca9ab2ca71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.