PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hyperspectral indices developed from multi-angular bidirectional reflectance can trace the particle size of granite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The particle size of a rock is one of the critical physical properties related to a series of geological processes. While the prevalent photometric studies performed to quantitatively assess the physical properties of minerals and rocks rely much on radiative transfer model inversions from surface reflectance, the complicated procedures required seriously limit their applications. Instead, this study has attempted an empirical-based approach to trace the particle size of granite based on multi-angular bidirectional reflected information, providing a practical method for quickly assessing the physical properties of minerals and rocks from surface reflectance. Five common hyperspectral index types together with different spectral preprocessing treatments, including the original hyperspectral reflectance, derivative analysis, continuum-removed reflectance, and apparent absorption spectra, were screened to explore the best indices for both measured and Hapke model-simulated datasets. The results suggested that the normalized difference index (ND) calculated from the apparent absorption spectra using the wavelengths of 1 325 nm and 1 800 nm is a robust index for tracing the particle size for both measured and simulated datasets.
Czasopismo
Rocznik
Strony
193--208
Opis fizyczny
Bibliogr. 75 poz.
Twórcy
autor
  • International Joint Laboratory of Ecology and Remote Sensing, Nanning Normal University, Nanning 530001, China
  • Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University), Ministry of Education, Nanning 530001, China
  • Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulated, Nanning Normal University), Nanning 530001, China
  • State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830001, China
autor
  • International Joint Laboratory of Ecology and Remote Sensing, Nanning Normal University, Nanning 530001, China
  • Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Nanning Normal University), Ministry of Education, Nanning 530001, China
  • Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulated, Nanning Normal University), Nanning 530001, China
autor
  • Xinjiang Key Laboratory of Mineral Resources and Digital Geology, Chinese Academy of Sciences, Urumqi 830001, China
  • Xinjiang Research Centre for Mineral Resources, Chinese Academy of Sciences, Urumqi 830001, China
  • State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830001, China
autor
  • Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
Bibliografia
  • 1. Adams JB (1974) Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. J Geophys Res 79:4829–4836. https://doi.org/10.1029/JB079i032p04829
  • 2. Adams JB, Filice AL (1967) Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. J Geophys Res 72(22):5705–5715. https://doi.org/10.1029/JZ072i022p05705
  • 3. Agar B, Coulter DW (2007) Remote sensing for mineral exploration-a decade perspective 1997–2007. In: Milkereit, B. (Ed.), In Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 109–136.
  • 4. Asrar GQ, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat 1. Agron J 76(2):300–306. https://doi.org/10.2134/agronj1984.00021962007600020029x
  • 5. Bannari A, Morin D, Bonn F, Huete AR (1995) A review of vegetation indices. Remote Sens Rev 13(1):95–120. https://doi.org/10.1080/02757259509532298
  • 6. Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ 35:161–173. https://doi.org/10.1016/0034-4257(91)90009-U
  • 7. Barton CVM, North PRJ (2001) Remote sensing of canopy light use efficiency using the photochemical reflectance index model and sensitivity analysis. Remote Sens Environ 78:264–273. https://doi.org/10.1016/S0034-4257(01)00224-3
  • 8. Bernard B (2012) Extra-terrestrial igneous granites and related rocks: a review of their occurrence and petrogenesis. Lithos 153:3–24. https://doi.org/10.1016/j.lithos.2012.04.007
  • 9. Brown CD, Vega-Montoto L, Wentzell PD (2000) Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration. Appl Spectrosc 54(7):1055–1068. https://doi.org/10.1366/0003702001950571
  • 10. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Method Res 33(2):261–304. https://doi.org/10.1177/0049124104268644
  • 11. Chang C, Laird DA, Mausbach MJ, Hurburgh CR (2001) Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Sci Soc Am J 65:480–490. https://doi.org/10.2136/sssaj2001.652480x
  • 12. Clark RN, Swayze GA, Gallagher A (1993) Mapping Minerals with Imaging Spectroscopy U.S. Geological Survey. Office of Mineral Resources:141–150.
  • 13. Clark RN, Roush TL (1984) Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J Geophys Res 89:6329–6340. https://doi.org/10.1029/JB089iB07p06329
  • 14. Clevers JG (1988) Application of a weighted infrared- red vegetation index for estimating leaf area index by correcting for soil moisture. Remote Sens Environ 25:53–69. https://doi.org/10.1016/0034-4257(89)90076-X
  • 15. Cord AM, Pinet PC, Daydou Y, Chevrel SD (2003) Planetary regolith surface analogs: Optimized determination of Hapke parameters using multi-angular spectro-imaging laboratory data. Icarus 165(2):414–427. https://doi.org/10.1016/S0019-1035(03)00204-5
  • 16. Croft H, Chen JM (2018) Leaf Pigment Content. Comprehensive Remote Sensing. Elsevier, pp 117–142. https://doi.org/10.1016/B978-0-12-409548-9.10547-0
  • 17. Crowley JK, Brickey DW, Rowan LC (1989) Airborne imaging spectrometer data of the Ruby mountains, Montana: mineral discrimination using relative absorption band-depth images. Remote Sens Environ 29:121–134. https://doi.org/10.1016/0034-4257(89)90021-7
  • 18. Cudahy TJ, Jones M, Thomas M, Laukamp C, Caccetta M, Hewson R, Rodger A, Verrall M (2008) Next Generation Mineral Mapping: Queensland Airborne HyMap and Satellite ASTER Surveys CSIRO Exploration & Mining Report P2007/364, 152.
  • 19. Gamon JA, Serrano L, Surfus JS (1997) The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112:492–501. https://doi.org/10.2307/4221805
  • 20. Garbulsky MF, Peñuelas J, Gamon J, Inoue Y, Filella I (2011) The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies. a review and meta-analysis. Remote Sens Environ 115:281–297. https://doi.org/10.1016/j.rse.2010.08.023
  • 21. Glotch TD, Bandfield JL, Wolff MJ, Arnold JA, Che C (2016) Constraints on the composition and particle size of chloride salt-bearing deposits on Mars. J Geophys Res Planets 121:454–471. https://doi.org/10.1002/2015JE004921
  • 22. Goetz AFH, Rowan LC (1981) Geologic remote sensing. Science 211:781–791. https://doi.org/10.1126/science.211.4484.781
  • 23. Govaerts YM, Verstraete MM, Pinty B, Gobron N (1999) Designing optimal spectral indices: a feasibility and proof of concept study. Int J Remote Sens 20(9):1853–1873. https://doi.org/10.1080/014311699212524
  • 24. Hapke B (1993) Theory of Reflectance and Emittance Spectroscopy. Cambridge Univ. Press, New York
  • 25. He T, Wang J, Lin Z, Cheng Y (2009) Spectral features of soil organic matter. Geo-Spat Inf Sci 12(1):33–40. https://doi.org/10.1007/s11806-009-0160-x
  • 26. Hong Y (2018) Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy. Geoderma 337:758–769. https://doi.org/10.1016/j.geoderma.2018.10.025
  • 27. Hong YS, Liu YL, Chen YY, Liu YF, Yu L, Liu Y, Cheng H (2018) Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy. Geoderma 337:758–769. https://doi.org/10.1016/j.geoderma.2018.10.025
  • 28. Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309. https://doi.org/10.1016/0034-4257(88)90106-X
  • 29. Issam B, Stephan MH, Ruben S, Fassil K (2020) Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances-A review. Trends Anal Chem 135:116166. https://doi.org/10.1016/j.trac.2020.116166
  • 30. Jin J, Pratama B, Wang Q (2020) Tracing Leaf Photosynthetic Parameters Using Hyperspectral Indices in an Alpine Deciduous Forest. Remote Sens 12:1124. https://doi.org/10.3390/rs12071124
  • 31. Johnson JR, Grundy WM, Lemmon MT, Bell JF III, Johnson MJ, Deen RG, Arvidson RE, Farrand WH, Guinness EA, Hayes AG, Herkenhoff KE, Seelos F IV, Soderblom J, Squyres S (2006a) Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit J Geophys Res Planets 111:2. https://doi.org/10.1029/2005JE002494
  • 32. Johnson Jeffrey R, Grundy William M, Lemmon Mark T, Bell James F, Johnson Miles J, Robert Deen RE, Arvidson WH, Farrand E. Guinness, Hayes Alexander G, Herkenhoff KE, Seelos F, Soderblom J, Squyres S (2006) Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity: PANCAM PHOTOMETRY-OPPORTUNITY. J Geophys Res: Planets 111(E12):n/a-n/a. https://doi.org/10.1029/2006JE002762
  • 33. Kim MS, Daughtry C, Chappelle E, McMurtrey J, Walthall C (1994) The Use of High Spectral Resolution Bands for Estimating Absorbed Photosynthetically Active Radiation A Par. In Proceedings of the CNES 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, Val d’Isère, France, 17–21:299–306.
  • 34. Labarre S, Ferrari C, Jacquemoud S (2017) Surface roughness retrieval by inversion of the Hapke model: a multiscale approach. Icarus 290:63–80. https://doi.org/10.1016/j.icarus.2017.02.030
  • 35. Lawley V, Lewis M, Clarke K, Ostendorf B (2016) Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review. Ecol Indic 60:1273–1283. https://doi.org/10.1016/j.ecolind.2015.03.021
  • 36. Li S, Li L (2011) Radiative transfer modeling for quantifying lunar surface minerals, particle size, and submicroscopic metallic Fe. J Geophys Res 116:E09001. https://doi.org/10.1029/2011JE003837
  • 37. le Maire G, Francois C, Dufrêne E (2004) Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens Environ 89:1–28. https://doi.org/10.1016/j.rse.2003.09.004
  • 38. le Maire G, François C, Soudani K, Berveiller D, Pontailler JY, Bréda N, Genet H, Davi H, Dufrêne E (2008) Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens Environ 112(10):3846–3864. https://doi.org/10.1016/j.rse.2008.06.005
  • 39. Li S, Milliken RE (2015) Estimating the modal mineralogy of eucrite and diogenite meteorites using visible-near infrared reflectance spectroscopy. Meteorit Planet Sci 50:1821–1850. https://doi.org/10.1111/maps.12513
  • 40. Li P, Wang Q (2013) Developing and validating novel hyperspectral indices for leaf area index estimation: Effect of canopy vertical heterogeneity. Ecol Indic 32:123–130. https://doi.org/10.1016/j.ecolind.2013.03.025
  • 41. Lin H, Lin Y, Wei Y, Xu R, Liu Y, Yang Y, Hu S, Yang W, He Z (2020) Estimation of Noise in the In Situ Hyperspectral Data Acquired by Chang’E-4 and Its Effects on Spectral Analysis of Regolith. Remote Sens 12(10):1603. https://doi.org/10.3390/rs12101603
  • 42. Martens H, Naes T (1992) Multivariate calibration. John Wiley & Sons
  • 43. Mcguire AF, Hapke BW (1995) An experimental study of light scattering by large, irregular particles. Icarus 113(1):134–155. https://doi.org/10.1006/icar.1995.1012
  • 44. Mengjuan W, Wang J, Wang Q, Zhou K, Zhang Z, Ma X, Chen W (2021) Retrieval of Particle Size of Natural Granite From Multiangular Bidirectional Reflectance Spectra Using the Hapke Model (June 2020). IEEE Transact Geosci Remote Sens 59(8):6537–6548. https://doi.org/10.1109/TGRS.2020.3030101
  • 45. Merton R, Huntington J (1999) Early simulated results of the ARIES-1 satellite sensor for multi-temporal vegetation research derived from AVIRIS. In Proceedings of the Eighth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA:9–11.
  • 46. Miller N L, Elvidge C D (1985) The iron absorption index: a comparison of ratio-based and baseline-based techniques for the mapping of iron oxides. In proceedings of the fourth thematic conference, international symposium on remote sensing of environment, environmental research institute of Michigan, Ann Arbor, MI:405–415.
  • 47. Ninomiya Y, Fu B (2002) Quartz index, carbonate index and SiO2 content index defined for ASTER TIR data. Journal of Remote Sensing Society of Japan 22:50–61. (in Japanese with English abstract) https://doi.org/10.11440/rssj1981.22.50.
  • 48. Pieters CM (1983) Strength of mineral absorption features in the transmitted component of near-infrared reflected light: First results from RELAB. J Geophys Res Solid Earth 88(B11):9534–9544. https://doi.org/10.1029/JB088iB11p09534
  • 49. Pilorget C, Fernando J, Ehlmann BL, Schmidt F, Hiroi T (2016) Wavelength dependence of scattering properties in the VIS-NIR and links with grain-scale physical and compositional properties. Icarus 267:296–314. https://doi.org/10.1016/j.icarus.2015.12.029
  • 50. Portela B, Michael DS, van Ruitenbeek FJA, Christoph H, Dilles JH (2021) Using hyperspectral imagery for identification of pyrophyllite-muscovite intergrowths and alunite in the shallow epithermal environment of the Yerington porphyry copper district. Ore Geol Rev 131:104012. https://doi.org/10.1016/j.oregeorev.2021.104012
  • 51. Qi J, Moran MS, Huete AR, Jackson RD, Chehbouni A (1991) View-atmosphere soil effect on vegetation indices derived from SPOT images. In: Proceedings of the 5th International Symposium Physical Measurements and Signatures in Remote Sensing, vol 2, Courchevel, France. pp. 785–790
  • 52. Qiao XX, Wang C, Feng MC, Yang WD, Ding GW et al (2017) Hyperspectral estimation of soil organic matter based on different spectral preprocessing techniques. Spectrosc Lett 50(3):156–163. https://doi.org/10.1080/00387010.2017.1297958
  • 53. Quinn DP, Gillis-Davis JJ, Lucey PG (2010) Using microsoft excel for hapke modeling: a technique to simplify calculations of optical constants and reflectance spectra. In: 41st annual lunar and planetary science conference
  • 54. Ramirez-Lopez L, Behrens T, Schmidt K, Stevens A, Demattê JAM, Scholten T (2013) The spectrum-based learner: a new local approach for modeling soil vis-NIR spectra of complex datasets. Geoderma 195:268–279. https://doi.org/10.1016/j.geoderma.2012.12.014
  • 55. Richardson AJ, Wiegand CL (1977) Distinguishing vegetation from soil background information. Photogramm Eng Rem S 43:1541–1552. https://doi.org/10.1109/TGE.1977.294499
  • 56. Rowan LC, Wetlaufer PH, Goetz AFH, Billingsley FC, Stewart JH (1974) Discrimination of Rock Types and Detection of Hydrothermally Altered Areas in South-Central Nevada by Use of Computer-Enhanced ERTS Images. Geological Survey Professional Paper 883. United States Geological Survey, U.S. Government Printing Office Washington D.C.
  • 57. Salisbury JW, Wald A (1992) The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals. Icarus 96(1):121–128. https://doi.org/10.1016/0019-1035(92)90009-V
  • 58. Serrano L, Peñuelas J, Ustin SL (2002) Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sens Environ 81:355–364. https://doi.org/10.1016/S0034-4257(02)00011-1
  • 59. Serventi G, Carli C, Sgavetti M, Ciarniello M, Capaccioni F, Pedrazzi G (2013) Spectral variability of plagioclase–mafic mixtures (1): effects of chemistry and modal abundance in reflectance spectra of rocks and mineral mixtures. Icarus 226(1):282–298. https://doi.org/10.1016/j.icarus.2013.05.041
  • 60. Shao Z, Er MJ (2016) Efficient leave-one-out cross-validation-based regularized extreme learning machine. Neurocomputing 194:260–270. https://doi.org/10.1016/j.neucom.2016.02.058
  • 61. Souchon AL, Pinet PC, Chevrel SD, Daydou YH, Baratoux D, Kurit K, Shepard MK, Helfensteine P (2011) An experimental study of Hapke’s modeling of natural granular surface samples. Icarus 215:313–331. https://doi.org/10.1016/j.icarus.2011.06.023
  • 62. Sowmya P, Giridhar M (2017) Analysis of continuum removed hyper spectral reflectance data of capsicum annum of ground truth data. Advances in Computational Sciences and Technology 10(8):2233–2241
  • 63. Stack KM, Milliken RE (2015) Modeling near-infrared reflectance spectra of clay and sulfate mixtures and implications for mars. Icarus 250:332–356. https://doi.org/10.1016/j.icarus.2014.12.009
  • 64. Stylinski CD, Gamon JA, Oechel WC (2002) Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia 131:366–374. https://doi.org/10.2307/4223264
  • 65. Sun Z, Wu Z, Zhao Y (2014) Semi-automatic laboratory goniospectrometer system for performing multi-angular reflectance and polarization measurements for natural surfaces. Rev Sci Instrum 85(1):9. https://doi.org/10.1063/1.4862814
  • 66. Sun Z, Lv Y, Shan L (2015) An assessment of the bidirectional reflectance models basing on laboratory experiment of natural particulate surfaces. J Quant Spectrosc Ra 163:102–119. https://doi.org/10.1016/j.jqsrt.2015.05.005
  • 67. Tsai F, Philpot W (1998) Derivative Analysis of Hyperspectral Data. Remote Sens Environ 66(1):41–51. https://doi.org/10.1016/S0034-4257(98)00032-7
  • 68. Verstraete MM, Pinty B (1996) Designing optimal spectral indexes for remote sensing applications. IEEE T Geosci Remote 34(5):1254–1265. https://doi.org/10.1109/36.536541
  • 69. Wang Q, Li P (2012) Identification of robust hyperspectral indices on forest leaf water content using PROSPECT simulated dataset and field reflectance measurements. Hydrol Process 26(8):1230–1241. https://doi.org/10.1002/hyp.8221
  • 70. Wang H (2015) Remote sensing methods research to identify different granitoids. Ph.D. dissertation, China University of Geosciences (Beijing).
  • 71. Weng JH, Lai KM, Liao TS, Hwang MY, Chen YN (2009) Relationships of photosynthetic capacity to PSII efficiency and to photochemical reflectance index of Pinus taiwanensis through different seasons at high and low elevations of sub-tropical Taiwan. Trees 23:347–356. https://doi.org/10.1007/s00468-008-0283-y
  • 72. Wu M, Wang Q, Wang J, Zhou K, Zhang Z, Ma X, Chen W (2021) Quantify the abundance of granite composit minerals using the Hapke model from bidirectional reflectance. IEEE T Geosci Remote. https://doi.org/10.1109/TGRS.2021.3111216
  • 73. Yamaguchi Y (1987) Possible techniques for lithologic discrimination using the short-wavelength-infrared bands of the Japanese ERS-1. Remote Sens Environ 23:117–129. https://doi.org/10.1016/0034-4257(87)90074-5
  • 74. Yang G (2008) The study of granitoids in Kalamaili area of eastern 657 Junggar, Xinjiang. Ph.D. dissertation, Chang’an Univ., Xi’an, China.
  • 75. Zhang X, Cloutis E (2021) Near‐infrared Spectra of Lunar Ferrous Mineral Mixtures. Earth Space Sci. https://doi.org/10.1029/2020EA001153
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f860a12-3310-458b-8d63-ea8cee285ae0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.