PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Assessment of Health Risk from Heavy Metals with Water Indices for Irrigation and the Portability of Munzur Stream: A Case Study of the Ovacık Area (Ramsar Site), Türkiye

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface water samples from the area of Munzur Stream in Türkiye (a Ramsar site) were evaluated for their suitability for irrigation and drinking purposes using different water quality indices. The human health risks were assessed as well. The study was conducted over a period of 24 months from January 2019 to December 2021 by taking samples from nine stations every month in order to determine the water quality of Munzur Stream, located in Tunceli. According to the results, Munzur Stream is in good condition in terms of the quality of drinking water and irrigation water. The concentrations of heavy metals such as Cu, Ni, Fe and Hg were high, though the water quality parameter according to Türkiye Ministry of Forestry and Water Affairs Surface Water Quality Regulations (TSWQR) was significantly lower than the permitted limits. In Munzur Stream, the irrigation water for all stations was reported to be excellent, good and suitable in terms of SAR, Na% and MH, respectively. The principal component analysis data formed the four principal components, explaining 98.22% of the total variance. The sources of pollution in this area include the rock types of the basin, soil erosion, domestic waste water discharge and agricultural flow of inorganic fertilisers.
Rocznik
Strony
111--123
Opis fizyczny
Bibliogr. 67 poz., map., rys., tab., wykr.
Twórcy
autor
  • Faculty of Aquaculture, Department of Basic Sciences, Munzur University Türkiye
  • Faculty of Aquaculture, Department of Basic Sciences, Munzur University, Türkiye
Bibliografia
  • [1]. Adeleke, O. A., Saphira, M. R., Daud, Z., Ismail, N., Ahsan, A., Ab Aziz, N. A., Al-Gheethi, A., Kumar, V., Fadilat, A., & Apandi, N. (2019). Principles and mechanism of adsorption for the effective treatment of palm oil mill effluent for water reuse. Nanotechnology in Water and Wastewater Treatment., https://doi.org/10.1016/B978-0-12-813902-8.00001-0.
  • [2]. Ali, J., Kazi, T. G., Tuzen, M., & Ullah, N. (2017). Evaluation of mercury and physicochemical parameters in different depths of aquifer water of Thar coalfield, Pakistan. Environmental Science and Pollution Research International, 24(21), 17731-17740. https://doi.org/10.1007/s11356-017-9291-z PMID:28601999.
  • [3]. Amiri, V., Bhattacharya, P., & Nakhaei, M. (2021b). The hydrogeochemical evaluation of groundwater resources and their suitability for agricultural and industrial uses in an arid area of Iran. Groundwater for Sustainable Development, 12, 100527. https://doi.org/10.1016/j.gsd.2020.100527.
  • [4]. Arshad, N., & Imran, S. (2017). Assessment of arsenic, fluoride, bacteria, and other contaminants in drinking water sources for rural communities of Kasur and other districts in Punjab, Pakistan. Environmental Science and Pollution Research International, 24, 2449-2463. https://doi.org/10.1007/s11356-016-7948-7 PMID:27817144.
  • [5]. Awais, M., Arshad, M., Shah, S. H. H., & Anwar-Ul-Haq, M. (2017). Evaluating groundwater quality for irrigated agriculture: Spatio-temporal investigations using GIS and geostatistics in Punjab, Pakistan. Arabian Journal of Geosciences, 10(23), 510. https://doi.org/10.1007/s12517-017-3280-x.
  • [6]. Belal, A. A. M., El-Sawy, M., & Dar, M. A. (2016). The effect of water quality on the distribution of macro-benthic fauna in Western Lagoon and Timsah Lake, Egypt. Egyptian Journal of Aquatic Research, 42(4), 437-448. https://doi.org/10.1016/j.ejar.2016.12.003.
  • [7]. Bodrud-Doza, M., Islam, A. T., Ahmed, F., Das, S., Saha, N., & Rahman, M. S. (2016). Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Sci., 30(1), 19-40. https://doi.org/10.1016/j.wsj.2016.05.001.
  • [8]. Cüce, H., Kalipci, E., Ustaoğlu, F., Dereli, M. A., & Türkmen, M. (2022). Multivariate statistical and spatial assessment of water quality from a dam threatened by drought at the mid-Anatolia, Cappadocia/Türkiye. Arabian Journal of Geosciences, 15, 441. https://doi.org/10.1007/s12517-022-09734-8.
  • [9]. Daud, M. K., Nafees, M., Ali, S., Rizwan, M., Bajwa, R. A., Shakoor, M. B., Arshad, M. U., Chatha, S. A. S., Deeba, F., Murad, W., Malook, I., & Zhu, S. J. (2017). Al,i S., Rizwan, M., Bajwa, R.A., Shakoor, M.B., Malook, I. (2017). Drinking water quality status and contamination in Pakistan. BioMed Research International, 2017, 7908183. Advance online publication. https://doi.org/10.1155/2017/7908183 PMID:28884130.
  • [10]. Debels, P., Figueroa, R., Urrutia, R., Barra, R., & Niell, X. (2005). Evaluation of water quality in the Chillán River (Central Chile) using physicochemical parameters and a modified water quality index. Environmental Monitoring and Assessment, 110, 301-322. https://doi.org/10.1007/s10661-005-8064-1 PMID:16308794.
  • [11]. Doneen, L. D. (1975). Water quality for irrigated agriculture. In: Plants in Saline Environments, pp. 56-76. https://doi.org/10.1007/978-3-642-80929-3_5.
  • [12]. Edet, A. E., & Offiong, O. E. (2002). Evaluation of water quality pollution indices for heavy metal contamination monitoring. a study case from Akpabuyo-Odukpani Area, Lower Cross River Basin (SoutheasternNigeria). GeoJournal57:295-304. https://doi.org/10.1023/B:GEJO.0000007250.92458.
  • [13]. de El-Aziz, S. H. A. (2017). Evaluation of groundwater quality for drinking and irrigation purposes in the north-western area of Libya (Aligeelat). Environ. Earth Sci. 76 (4). Environmental Earth Sciences, 171(1-4), 595-609. https://doi.org/10.1007/s12665-017-6421-3.
  • [14]. Egemen, O., Sunlu, U. (1999), "Water Quality". Ege University Faculty of Fisheries. Publication, 14.
  • [15]. Falowo, O. O., Akindureni, Y., & Ojo, O. (2017). Irrigation and drinking water quality index determination for groundwater quality evaluation in Akoko Northwest and Northeast Areas of Ondo State, Southwestern Nigeria. Am. J. Water Sci. Eng., 3(5), 50. https://doi.org/10.11648/j.ajwse.20170305.11.
  • [16]. Fatima, S. U., Khan, M. A., Siddiqui, F., Mahmood, N., Salman, N., Alamgir, A., & Shaukat, S. S. (2022). Geospatial assessment of water quality using principal components analysis (PCA) and water quality index (WQI) in Basho Valley, Gilgit Baltistan (Northern Areas of Pakistan). Environmental Monitoring and Assessment, 194, 151. https://doi.org/10.1007/s10661-022-09845-5 PMID:35129685.
  • [17]. Fatmi Z, Azam I, Ahmed F, Kazi A, Gill AB, Kadir MM. (2009). Core Group for Arsenic Mitigation in Pakistan. Health burden of skin lesions at low arsenic exposure through groundwater in Pakistan. Is river the source? 5:575-581. https://doi.org/10.1016/j.envres.2009.04.002.
  • [18]. Gao, H., Bai, J., Xiao, R., Liu, P., Jiang, W., & Wang, J. (2013). Levels, sources and risk assessment of trace elements in wetland soils of a typical shallow freshwater lake, China. Stochastic Environmental Research and Risk Assessment, 27(1), 275- 284. https://doi.org/10.1007/s00477-012-0587-8.
  • [19]. Guo, Q., Wang, Y., Ma, T., & Ma, R. (2007). Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. Journal of Geochemical Exploration, 93, 1-12. https://doi.org/10.1016/j.gexplo.2006.07.001.
  • [20]. Islam, A. T., Shen, S., Bodrud-Doza, M. D., & Rahman, M. S. (2017). Assessing irrigation water quality in Faridpur district of Bangladesh using several indices and statistical approaches. Arabian Journal of Geosciences, 10(19), 418. https://doi.org/10.1007/s12517-017-3199-2.
  • [21]. Jiang, L., Yao, Z., Liu, Z., Wang, R., & Wu, S. (2015). Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau. Journal of Geochemical Exploration, 155, 76-83. https://doi.org/10.1016/j.gexplo.2015.04.009.
  • [22]. Kangabam, R. D., Bhoominathan, S. D., Kanagaraj, S., & Govindaraju, M. (2017). Development of a water quality index (WQI) for the Loktak Lake in India. Applied Water Science, 7(6), 2907-2918. https://doi.org/10.1007/s13201-017-0579-4.
  • [23]. Kumar, P., Thakur, P. K., Bansod, B. K. S., & Debnath, S. (2018). Groundwater: A regional resource and a regional governance. Environment, Development and Sustainability, 20, 1133-1151. https://doi.org/10.1007/s10668-017-9931-y.
  • [24]. Kumar, B., Singh, U. K., & Ojha, S. N. (2018). Evaluation of geochemical data of Yamuna River using WQI and multivariate statistical analyses: a case study. Int. J. River Basin Manage., https://doi.org/10.1080/15715124.2018.1 437743.
  • [25]. Kumari, B., Kumar, V., Sinha, A. K., Ahsan, J., Ghosh, A. K., Wang, H., & Deboeck, G. (2017). Toxicology of arsenic in fish and aquatic systems. Environmental Chemistry Letters, 15(1), 43-64. https://doi.org/10.1007/s10311-016-0588-9.
  • [26]. Kutlu, B., Küçükgül, A., & Danabaş, D. (2017). Annual and seasonal variation of nutrients and pigment content in Uzunçayir Dam Lake, Türkiye (Eastern Anatolia). Elixir Environ. & Forestry, 112, 48971-48974.
  • [27]. Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. The Science of the Total Environment, 313, 77-89. https://doi.org/10.1016/S0048-9697(02)00683-6 PMID:12922062.
  • [28]. Maia, C. E. Rodrigues Paz Rego do K.K.(2012). Proposal for an index to classify irrigation water quality: a case study in Northeastern Brazil. Revista Brasileira de Ciência do Solo.36:823-830.DOI: 10.1590/S0100-06832012000300013.
  • [29]. Mohan, S. V., Nithila, P., & Reddy, S. J. (1996). Estimation of heavy metal in drinking water and development of heavy metal pollution index. Journal of Environmental Science and Health. Part A, Environmental Science and Engineering & Toxic and Hazardous Substance Control, 31, 283-289. https://doi.org/10.1080/10934529609376357.
  • [30]. Naseem, S., Hamz,a S., Bashir, E. (2010). Groundwater geochemistry of Winder agricultural farms, Balochistan, Pakistan and assessment for irrigation water quality. European Water, 31, 21-32.
  • [31]. Obiefuna, G. I., & Sheriff, A. (2011). Assessment of Shallow Ground Water Quality of Pindiga Gombe Area Yola Area, NE, Nigeria for irrigation and domestic purposes. Research Journal of Environmental and Earth Sciences, 3, 131-141. http://maxwellsci.com/print/rjees/v3-131-141.pdf.
  • [32]. Oyekanmi, A. A., Daud, Z., Daud, N. M., & Gani, P. (2017). Adsorption of heavy metal from palm oil mill efuent on the mixed media used for the preparation of composite adsorbent. MATEC Web of Conferences, 103, 6020. https://doi.org/10.1051/matecconf/201710306020.
  • [33]. Özer, Ç., & Köklü, R. (2019). Assessment of Lower Sakarya River water quality in terms of irrigation water. Journal of Natural Hazards and Environment, 5, 1-10. https://doi.org/10.21324/dacd.4831.
  • [34]. Podgorski, J. E., Eqani, S., Heqing, S., & Berg, M. (2016). Geospatial modeling of widespread arsenic contamination in unconfined, high-pH aquifers in Pakistan. In:AGU Fall Meeting Abstracts.B14A-08.
  • [35]. Prasanna, M. V., Praveena, S. M., Chidambaram, S., Nagarajan, R., & Elayaraja, A. (2012). Evaluation of water quality pollution indices for heavy metal contamination monitoring: A case study from Curtin Lake, Miri City, East Malaysia. Environmental Earth Sciences, 67, 1987-2001. https://doi.org/10.1007/s12665-012-1639-6.
  • [36]. Rafique, T., Naseem, S., Bhanger, M. I., & Usmani, T. H. (2008). Fluoride ion contamination in the groundwater of Mithi sub-district, the Thar Desert, Pakistan. Environmental Geology (Berlin), 56, 317-326. https://doi.org/10.1007/s00254-007-1167-y.
  • [37]. Janardhana Raju, N., Shukla, U. K., & Ram, P. (2011). Hydrogeochemistry for the assessment of groundwater quality in Varanasi: A fast-urbanizing center in Uttar Pradesh, India. Environmental Monitoring and Assessment, 173, 279-300. https://doi.org/10.1007/s10661-010-1387-6 PMID:20221794.
  • [38]. Ramakrishnaiah, C. R., Sadashivaiah, C., & Ranganna, G. (2009). Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State, India. Journal of Chemistry.Research article, 6, 523-530. https://doi.org/10.1155/2009/757424.
  • [39]. Rasool, A., Xiao, T., Farooqi, A., Shafeeque, M., Liu, Y., Kamran, M. A., Katsoyiannis, I. A., & Eqani, S. A. M. A. S. (2017). Quality of tube well water intended for irrigation and human consumption with special emphasis on arsenic contamination at the area of Punjab, Pakistan. Environmental Geochemistry and Health, 39(4), 847- 863. https://doi.org/10.1007/s10653-016-9855-8 PMID:27424296.
  • [40]. Ravikumar, P., & Mehmood, M. A. (2013). Water quality index to determine the surface water quality of Sankey Tank and Mallathahalli Lake, Bangalore urban district, Karnataka, India. Applied Water Science, 3, 247-261. https://doi.org/10.1007/s13201-013-0077-2.
  • [41]. Rosli, M., Daud, Z., Ridzuan, M., Abd Aziz, N., Awang, H., Oyekanmi Adeleke, A., Hossain, K., & Ismail, N. (2019). Equilibrium isotherm and kinetic study of the adsorption of organic pollutants of leachate by using micro peatactivated carbon composite media. Desalination and Water Treatment, 160, 185-192. https://doi.org/10.5004/ dwt.2019.24247.
  • [42]. Rutigliano, F. A., Marzaioli, R., De Crescenzo, S., & Trifuoggi, M. (2019). Human health risk from consumption of two common crops grown in polluted soils. The Science of the Total Environment, 691, 195-204. https://doi.org/10.1016/j.scitotenv.2019.07.037 PMID:31323568.
  • [43]. Saleh, H. N., Panahande, M., Yousefi, M., Asghari, F. B., Oliveri Conti, G., Talaee, E., & Mohammadi, A. A. (2019). Carcinogenic and noncarcinogenic risk assessment of heavy metals in groundwater wells in Neyshabur Plain, Iran. Biological Trace Element Research, 190, 251-261. https://doi.org/10.1007/s12011-018-1516-6 PMID:30225757.
  • [44]. Saleem, M., Iqbal, J., & Shah, M. H. (2019). Seasonal variations, risk assessment and multivariate analysis of trace metals in the freshwater reservoirs of Pakistan. Chemosphere, 216, 715-724. https://doi.org/10.1016/j.chemosphere.2018.10.173 PMID:30391893.
  • [45]. Sançar, T., Zabcı, C., Karabacak, V., Yazıcı, M., & Akyüz, H. S. (2019). Geometry and Paleoseismology of the Malatya Fault (Malatya-Ovacık Fault Zone), Eastern Turkey: Implications for intraplate deformation of the Anatolian Scholle. Journal of Seismology, 23(2), 319-340. https://doi.org/10.1007/s10950-018-9808-z.
  • [46]. Sing, K. S. W., Everett, D. H., Haul, R., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (2008). Reporting Physisorption Data for Gas/Solid Systems. In:Handbook of Heterogeneous Catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, pp.1217-1230.http://dx.doi.org/10.1002/9783527610044.hetcat006.
  • [47]. Singaraja, C., Chidambaram, S., Anandhan, P., Prasanna, M. V., Thivya, C., Thilagavathi, R., & Sarathidasan, J. (2014). Hydrochemistry of groundwater in a coastal region and itsrepercussion on quality, a case study—Thoothukudi district, Tamil Nadu, India. Arabian Journal of Geosciences, 7(3), 939-950. https://doi.org/10.1007/s12517-012-0794-0.
  • [48]. Soomro, F., Rafique, T., Michalski, G., Ali, S. A., Naseem, S., & Khan, M. U. (2017). Occurrence and delineation of high nitrate contamination in the groundwater of Mithi sub-district, Thar Desert, Pakistan. Environmental Earth Sciences, 76(10), 355. https://doi.org/10.1007/s12665-017-6663-0.
  • [49]. Srinivas, Y., Aghil, T. B., Oliver, D. H., Nair, C. N., & Chandrasekar, N. (2017). Hydrochemical characteristics and quality assessment of groundwater along the Manavalakurichi coast, Tamil Nadu, India. Applied Water Science, 7(3), 1429- 1438. https://doi.org/10.1007/s13201-015-0325-8.
  • [50]. Şener, Ş., Şener, E., & Davraz, A. (2017). Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). The Science of the Total Environment, 584-585, 131-144. https://doi.org/10.1016/j.scitotenv.2017.01.102 PMID:28147293.
  • [51]. Tokatlı, C., & Varol, M. (2021). Impact of the COVID-19 lockdown period on surface water quality in the Meriç-Ergene River Basin, Northwest Turkey. Environmental Research, 197, 111051. https://doi.org/10.1016/j.envres.2021.111051 PMID:33753075.
  • [52]. Tokatli, C., Mutlu, E., & Arslan, N. (2021). Assessment of the potentially toxic element contamination in water of Şehriban Stream (Black Sea Region, Turkey) by using statistical and ecological indicators. Water Environment Research, 93, 2060-2071. https://doi.org/10.1002/wer.1576 PMID:33899977.
  • [53]. Tokatli, C., Uğurluoğlu, A., Köse, E., & Arslan, N. (2021). Ecological risk assessment of toxic metal contamination in a significant mining basin in Turkey. Environmental Earth Sciences, 80, 17. https://doi.org/10.1007/s12665-020- 09333-4.
  • [54]. Tokatlı, C., Islam, T., Onur, Ş. G., Ustaoğlu, F., Islam, M. S., & Dindar, M. B. (2022). Md.A.R., Onur, Güner, Ş., Ustaoğlu,F., Islam, S. Md., Büyükgöze Dindar, M. (2022). A pioneering study on health risk assessment of fluoride in drinking water in Thrace Region of northwest Türkiye. Groundwater for Sustainable Development, 19, 100836. https://doi. org/10.1016/j.gsd.2022.100836.
  • [55]. TSWQR. (2016). 2016 TSWQR Turkish Surface Water Quality Regulation (Vol. 29797). Official Gazette.
  • [56]. Uddin, M. M., Peng, G., Wang, Y., Huang, J., & Huang, L. (2021). Pollution status, spatial distribution and ecological risk of heavy metals in sediments of a drinking water lake in South Eastern China. Environmental Pollutants and Bioavailability, 33(1), 19-30. https://doi.org/10.1080/2639 5940.2021.1894988.
  • [57]. USEPA. (2004.) Environmental protection agency, risk assessment guidance for superfund, Vol. 1, Human Health Evaluation Manual (Part A), Washington, DC.
  • [58]. Ustaoğlu, F., Tepe, Y., & Aydın, H. (2020a). Heavy metals in sediments of two nearby streams from Southeastern Black Sea Coast: Contamination and ecological risk assessment. Environmental Forensics, 21, 145-156. https://doi.org/10.1 080/15275922.2020.1728433.
  • [59]. Ustaoğlu, F., Tepe, Y., & Taş, B. (2020b). Assessment of stream quality and health risk in a subtropical Turkey river system: A combined approach using statistical analysis and water quality index. Ecological Indicators, 113, 105815. Advance online publication. https://doi.org/10.1016/j.ecolind.2019.105815.
  • [60]. Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Ganthi, R.R., Chidambaram, S., Anandhan, P., Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar subbasin, Tamilnadu, India. Environmental monitoring and assessment 17181-4):595-609. https://doi.org/10.1007/s10661-009-1302-1.
  • [61]. Vasanthavigar M, Srinivasamoorthy K, Vijayaragavan K, Ganthi RR, Chidambaram S, Anandhan P, Vasudevan S (2010) Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environmental monitoring and assessment 17181-4):595- 609. https://doi.org/10.1007/s10661-009-1302-1.
  • [62]. Vega, M., Pardo, R., Barrato, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research, 32, 3581- 3592. https://doi.org/10.1016/S0043-1354(98)00138-9.
  • [63]. Wang, J., Liu, G., Liu, H., & Lam, P. K. S. (2017). Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. The Science of the Total Environment, 583, 421-431. https://doi.org/10.1016/j.scitotenv.2017.01.088 PMID:28126280.
  • [64]. WHO. (2011). Guidelines for drinking-water quality, fourth edition. WHO. http://www.who.int/watersanitationhealth/ publications/2011/dwq_guidelines/en/. Accessed 1March 2018.
  • [65]. Xiao, J., Wang, L., Deng, L., & Jin, Z. (2019). Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. The Science of the Total Environment, 650, 2004- 2012. https://doi.org/10.1016/j.scitotenv.2018.09.322 PMID:30290343.
  • [66]. Zeng, X., Liu, Y., You, S., Zeng, G., Tan, X., Hu, X., Hu, X., Huang, L., & Li, F. (2015). Spatial distribution, health risk assessment and statistical source identification of the trace elements in surface water from the Xiangjiang River, China. Environmental Science and Pollution Research International, 22, 9400-9412. https://doi.org/10.1007/s11356-014-4064-4 PMID:2587441.8
  • [67]. Zhang, Z., Wang, J. J., Ali, A., & DeLaune, R. D. (2016). Heavy metal distribution and water quality characterization of water bodies in Louisiana’s Lake Pontchartrain Basin, USA. Environmental Monitoring and Assessment, 188(11), 628. https://doi.org/10.1007/s10661-016-5639-y PMID:27766564.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f84e703-fa47-430f-8d2d-bf9e4460f8bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.