PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simple Technique of Initial Speed Identification for Speed-Sensorless Predictive Controlled Induction Motor Drive

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents a simple technique of identifying the initial speed that allows for restarting a sensorless induction motor (IM) drive controlled by a model predictive flux control (MPFC). Initial speed identification is required because, according to the research, the applied current-model reference adaptive system (C-MRAS) can restart the IM after failure only if the error of the initial speed set in the estimator is < 25%. The proposed technique is based on short periods of flux generation for the certain initial speed and observation of the estimated torque respond. The direction of the estimated torque determines whether the real speed is higher or lower than the initial one set in the estimator. In two steps, the algorithm identifies the initial speed with an accuracy of 25%. This allows for a quick restart of the IM from any speed, eliminating the disadvantage of the sensorless drive control system with the C-MRAS speed estimator. The experimental results measured on a 50 kW drive which illustrates the operation and performances of the system are presented.
Wydawca
Rocznik
Strony
189--197
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
  • Sieć Badawcza Łukasiewicz - Instytut Elektrotechniki, ul. Mieczysława Pożaryskiego 28, 04-703 Warszawa, Poland
  • Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
  • Sieć Badawcza Łukasiewicz - Instytut Elektrotechniki, ul. Mieczysława Pożaryskiego 28, 04-703 Warszawa, Poland
Bibliografia
  • Abu-Rub, H., Stando, D. and Kazmierkowski, M. P. (2013). Simple Speed Sensorless DTC-SVM Scheme for Induction Motor Drives. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(2), pp. 301–307. doi: 10.2478/bpasts-2013-0028.
  • Boldea, I. and Nasar, S. A. (2017). Vector Control of AC Drives, Vector Control of AC Drives. doi: 10.1201/9780203734407.
  • Depenbrock, M. (1988). Direct Self-Control (DSC) of Inverter-Fed Induction Machine. IEEE Transactions on Power Electronics, 3(4), pp. 420–429. doi: 10.1109/63.17963.
  • Donoso, F., Mora, A., Cárdenas Dobson, J., Angulo, A., Sáez Hueichapán, D. and Rivera, M. (2018). Finite-Set Model-Predictive Control Strategies for a 3L-NPC Inverter Operating with Fixed Switching Frequency. IEEE Transactions on Industrial Electronics, 65(5). doi: 10.1109/TIE.2017.2760840.
  • Dybkowski, M. and Orlowska-Kowalska, T. (2008). Low-Speed Performance of the Stator Current-Based MRAS Estimator with FL Controller in the Sensorless Induction Motor Drive. In: 11th International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2008, pp. 75–80. doi: 10.1109/OPTIM.2008.4602460.
  • Gadoue, S. M., Giaouris, D. and Finch, J. W. (2009). Sensorless Control of Induction Motor Drives at Very Low and Zero Speeds Using Neural Network Flux Observers. IEEE Transactions on Industrial Electronics, 56(8), pp. 3029–3039. doi: 10.1109/ TIE.2009.2024665.
  • Habibullah, M., Lu, D. D.-C., Xiao, D. and Rahman, M. F. (2017). Finite-State Predictive Torque Control of Induction Motor Supplied from a Three-Level NPC Voltage Source Inverter. IEEE Transactions on Power Electronics. doi: 10.1109/ TPEL.2016.2522977.
  • Holtz, J. (2002). Sensorless Control of Induction Motors. Proceedings of the IEEE, 90(8), pp. 1358–1394.
  • Holtz, J. (2005). Developments in sensorless AC drive technology. In: Proceedings of the International Conference on Power Electronics and Drive Systems, pp. 9–16. doi: 10.1109/ peds.2005.1619652.
  • Iura, H., Ide, K., Hanamoto, T. and Chen, Z. (2011). An Estimation Method Of Rotational Direction and Speed for Free-Running AC Machines without Speed and Voltage Sensor. IEEE Transactions on Industry Applications, 47(1), pp. 153–160. doi: 10.1109/TIA.2010.2091670.
  • Kazmierkowski, M. P. and Tunia, H. (1994). Automatic Control of Converter-Fed Drives. Amsterdam-London-New York-Tokyo, Warsaw: Elsevier Ltd.
  • Kikuchi, T., Matsumoto, Y. and Chiba, A. (2018). Fast Initial Speed Estimation for Induction Motors in the Low-Speed Range. IEEE Transactions on Industry Applications, 54(4), pp. 3415–3425. doi: 10.1109/ TIA.2018.282.5292.
  • Kobayashi, N., Kondo, K. and Yamazaki, O. (2016). Induction Motor Speed-Sensorless Vector Control Using Mechanical Simulator and Disturbance Torque Compensation. IEEE Transactions on Industry Applications, 52(3), pp. 2323–12331. doi: 10.1109/TIA.2016.2524440.
  • Kondo, K. (2015). Re-Starting Technologies for Rotational Sensorless Controlled AC Motors at the Rotating Status. In: Proceedings of 10th Asian Control Conference, pp. 1–6. doi: 10.1109/ASCC.2015.7244839.
  • Korzonek, M. and Orlowska-Kowalska, T. (2016). Stability Analysis of MRASSCC Speed Estimator in Motoring and Regenerating Mode. Power Electronics and Drives, 1(2), pp. 113–131.
  • Lee, K., Ahmed, S. and Lukic, S. M. (2017). Universal Restart Strategy for Scalar V/f Controlled Induction Machines. IEEE Transactions on Industry Applications, 53(6), pp. 5489–5495. doi: 10.1109/TIA.2017.2733497.
  • Maiti, S., Verma, V., Chakraborty, C. and Hori, Y. (2012). An Adaptive Speed Sensorless Induction Motor Drive with Artificial Neural Network for Stability Enhancement. IEEE Transactions on Industrial Informatics, 8(4), pp. 757–766. doi: 10.1109/ TII.2012.2210229.
  • Orlowska-Kowalska, T. and Dybkowski, M. (2010). Stator-current-based MRAS Estimator for A Wide Range Speed-Sensorless Induction-Motor Drive. IEEE Transactions on Industrial Electronics, 57(4), pp. 1296–1308. doi: 10.1109/TIE.2009.2031134.
  • Orlowska-Kowalska, T. and Dybkowski, M. (2011). Performance Analysis of the Sensorless Induction Motor Drive System Under Faulted Conditions. In: 2011 IEEE EUROCON - International Conference on Computer as a Tool. IEEE, pp. 1–4. doi: 10.1109/EUROCON.2011.5929414.
  • Pan, H., Springob, L. and Holtz, J. (1997). Improving the Start and Restart Behavior Trough State Recognition of AC Drives. In: Proceedings of Power Conversion Conference Nagaoka, pp. 589–594. doi: 10.1109/pccon.1997.638246.
  • Schauder, C. (1992). Adaptive Speed Identification for Vector Control of Induction Motors without Rotational Transducers. IEEE Transactions on Industry Applications, 28(5), pp. 1054–1061. doi: 10.1109/28.158829.
  • Stando, D. (2018). Predictive Control of 3-Level Inverter-Fed Sensorless Induction Motor Drive. PhD Thesis. Warsaw: Warsaw University of Technology, Faculty of Electrical Engineering.
  • Stando, D. and Kazmierkowski, M. P. (2020). Constant Switching Frequency Predictive Control Scheme for Three-Level Inverter-Fed Sensorless Induction Motor Drive. Bulletin of the Polish Academy of Sciences Technical Sciences, 68(5). doi: 10.24425/bpasts.2020.134668.
  • Tajima, H., Matsumoto, Y. and Umida, H. (1996). Speed Sensorless Vector Control Method for an Industrial Drive System. IEEJ Transactions on Industry Applications, 116(11), pp. 1103–1109. doi: 10.1541/ieejias.116.1103.
  • Vazquez, S., Rodriguez, J., Rivera, M., Franquelo, L. G. and Norambuena, M. (2017). Model Predictive Control for Power Converters and Drives: Advances and Trends. IEEE Transactions on Industrial Electronics, 64(2). doi: 10.1109/TIE.2016.2625238.
  • Wang, F., Chen, Z., Stolze, P., Stumper, J.-F., Rodríguez, J. and Kennel, R. (2014). Encoderless Finite-State Predictive Torque Control for Induction Machine with a Compensated MRAS. IEEE Transactions on Industrial Informatics. IEEE Computer Society, 10(2), pp. 1097–1105. doi: 10.1109/TII.2013.2287395.
  • Wang, H., Sun, W., Yu, Y., Wang, G. and Xu, D. (2015). Robustness improvement for adaptive full order observer in sensorless induction motor drives. In: 9th International Conference on Power Electronics - ECCE Asia: ‘Green World with Power Electronics’, ICPE 2015-ECCE Asia. doi: 10.1109/ICPE.2015.7167961.
  • Yang, H., Zhang, Y., Walker, P. D., Zhang, N. and Xia, B. (2017). A Method to Start Rotating Induction Motor Based on Speed Sensorless Model-Predictive Control. IEEE Transactions on Energy Conversion. IEEE, 32(1), pp. 359–368. doi: 10.1109/TEC.2016.2614670.
  • Yin, S., Xia, J., Zhao, Z., Zhao, L., Liu, W., Diao, L. and Jatskevich, J. (2020). Fast Restarting of Free-Running Induction Motors Under Speed-Sensorless Vector Control. IEEE Transactions on Industrial Electronics, 67(7), pp. 6124–6134. doi: 10.1109/TIE.2019.2934077.
  • Zhang, Y. and Yang, H. (2016). Two-Vector-Based Model Predictive Torque Control Without Weighting Factors for Induction Motor Drives. IEEE Transactions on Power Electronics, 31(2), pp. 1381–1390. doi: 10.1109/TPEL.2015.2416207.
  • Zhang, Y., Bai, Y., Yang, H. and Zhang, B. (2019). Low Switching Frequency Model Predictive Control of Three-Level Inverter-Fed IM Drives with Speed-Sensorless and Field-Weakening Operations. IEEE Transactions on Industrial Electronics, 66(6), pp. 4262–4272. doi: 10.1109/TIE.2018.2868014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f83b6ac-5731-4da2-aacb-3b215de8a084
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.