PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Study of the dynamics of magnetic particles in rotating magnetic field: A 3D finite element analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analysis of magnetic particle dynamics in a rotating magnetic field and the exploration of the magnetic agglomeration mechanism are crucial for effectively reducing agglomeration in strong magnetic minerals and improving sorting efficiency. The forces acting on magnetic particles in a rotating magnetic field were analyzed in this study. A 3D model was built to simulate the complex interaction between two magnetic particles in a rotating magnetic field using COMSOL Multiphysics finite element simulation software. It shows that the number of periods of change in the spiral period, velocity, and acceleration remains consistent under different conditions. Additionally, their period numbers are positively correlated with magnetic field rotational speed, medium viscosity, and the initial particle spacing, and negatively correlated with magnetic field strength. Under various conditions, the larger the area of the velocity-closed surface in the same cycle, the larger the helical diameter of the particle trajectory. The initial acceleration of the particles exhibits a positive correlation with the strength of the magnetic field, a negative correlation with the viscosity of the medium and the initial distance, and no significant relationship with the rotational speed of the magnetic field. For further research on the dynamics of magnetic particles and the refinement of the mechanism of magnetic agglomeration, the results have an important theoretical reference value.
Rocznik
Strony
art. no. 199981
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou, Fujian 350108, China
autor
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou, Fujian 350108, China
autor
  • School of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
autor
  • Shandong Huate Magnet Technology Co., Ltd., Weifang 261061, China
  • Shandong Huate Magnet Technology Co., Ltd., Weifang 261061, China
autor
  • College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
Bibliografia
  • ALQADI, M.K., ALZOUBI, F.Y., 2014. Magnetic interaction in the metamaterial/magnet system. Chin. Phys. B.
  • DU A, DU H 2006. Monte Carlo calculation of the magnetization behavior and the magnetocaloric effect of interacting particles. J. Magn. Magn. Mater., 299, 247-254.
  • ENCINAS-OROPESA, A, DEMAND, M, PIRAUX, L, et al., 2001. Effect of dipolar interactions on the ferromagnetic resonance properties in arrays of magnetic nanowires. J. Appl. Phys., 89, 6704–6706.
  • J C L 1984. Improving the way of magnetic separation of fine-grained magnetite (in Chinese). Metal Mine, 43-46.
  • JI, B., WU, P,. REN, H., et al. 2016. Segregation behavior of magnetic ions in continuous flowing solution under gradient magnetic field. Chin. Phys. B, 25, 74704-074704.
  • KU, J., CHEN, H., HE, K., et al. 2015. Force analysis and dynamic simulation of ferromagnetic mineral particles in magnetic separation process. Journal of Central South University (Science and Technology), 46, 1577-1582.
  • KU, J., XIA, J., LI, J., et al. 2021. Accurate calculation of major forces acting on magnetic particles in a high-gradient magnetic field: A 3D finite element analysis. Powder Technol., 394, 767-774.
  • LIU, J., JIN, S., 2009. The actuality and counter measure of the iron ore resource in China. China Mining Magazine, 18, 1-2, 19.
  • LIU, J., XIE, S., LI, X., et al. 2023. Separating efficiency of ferromagnetic particles and principle of low-intensity dry magnetic separator under different air supply modes: Based on multi-physical modeling. Powder Technol., 415, 118155.
  • NTALLIS, N., EFTHIMIADIS, K.G., 2014. A 3D finite elements micromagnetic simulation of a ferromagnetic particle. J. Magn. Magn. Mater., 363, 152-157.
  • OKADA, I., OZAKI, M., MATIJEVIĆ, E. 1991. Magnetic interactions between platelet-type colloidal particles. J. Colloid Interface Sci, 142, 251-256.
  • REYNE, G., SABONNADIERE, J., COULOMB, J., et al. 1987. A survey of the main aspects of magnetic forces and mechanical behaviour of ferromagnetic materials under magnetization. IEEE T Magn., 23, 3765-3767.
  • REYNE, G., SABONNADIERE, J., IMHOFF, J., 1988. Finite element modelling of electromagnetic force densities in DC machines. IEEE T Magn., 24, 3171-3173.
  • SVOBODA, J., LAZER, M., RIELE, W.T., 1987. Selective magnetic separation of uranium and gold. IEEE T Magn., 23, 283-293.
  • TARTAKOVSKAYA, E.V., 2010. Reorientation phase transitions in planar arrays of dipolarly interacting ferromagnetic particles. J. Magn. Magn. Mater., 322:, 3495-3501.
  • XU, Z., TANG, Z., CHEN, F., et al. 2023. Study of lateral assembly of magnetic particles in magnetorheological fluids under magnetic fields. J. Magn. Magn. Mater., 566, 170293.
  • XUE, Z., WANG, Y., ZHENG, X., et al. 2022. Role of gravitational force on mechanical entrainment of nonmagnetic particles in high gradient magnetic separation. Miner. Eng, 186, 10772.
  • YAMAGUCHI, M., OZAWA, S., YAMAMOTO, I., 2010. Dynamic Behavior of Magnetic Alignment in Rotating Field for Magnetically Weak Particles., Jpn. J. Appl. Phys., 49, 080213.
  • YANG, Y., YANG, S., YANG , W., et al. 2021. Angular dependence of vertical force and torque when magnetic dipole moves vertically above flat high-temperature superconductor. Chin. Phys. B, 30, 571-576.
  • YI, F., CHEN, L., ZENG, J.., 2023. Combinatorial optimization of rotating matrix in centrifugal high gradient magnetic separation. Miner. Eng., 202, 108309.
  • YI, F., CHEN, L., ZENG, J., et al. 2022. Rotating flow characteristics in centrifugal high gradient magnetic separation and its effect on particle capture behavior. Miner. Eng., 179, 107442.
  • ZENG, J., TONG, X., XU, G., et al. 2020. Comparative magnetic capture characteristics of revolving and spinning wires in uniform magnetic field. Powder Technol., 363, 161-168.
  • ZHANG, L., YANG, H., FENG, A., et al. 2016. Study on Utilization and Analysis of Supply and Demand of Global Iron Ore resources. Conservation and Utilization of Mineral Resources, 57-63.
  • ZHAO, C., PENG, X. 2012. Analysis of properties of magnetorheological fluids calculated by finite element method and comparison with results based on magnetic dipole model. Journal of Functional Materials, 43, 2098-2101.
  • ZHENG, X., LI, S., DU, L., et al. 2023. Investigation of particle capture by grooved plates with elliptic teeth for high intensity magnetic separation. Sep. Purif. Technol., 325, 124685.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f834916-9e24-4389-84b4-2e916d6c5d55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.