PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of the microcrack shape, size and direction on the poroelastic behaviors of a single osteon: a finite element study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a finite element study is proposed by using the Comsol Multiphysics software to evaluate the effects of microcrack shape, size and direction on the poroelastic behaviors of a single osteon. Methods: This finite element model is established by using the Comsol Multiphysics software, and we just focus on the comparison of the influences of those microcrack geometric parameters on the osteonal fluid pressure and velocity. Results: The results show that: (1) microcracks in the osteon wall can induce a release of the fluid pressure, but enlarge the velocity in this region; (2) equal-area microcrack with ellipsoid-like shape produced a larger fluid pressure and velocity fields in the osteon than that of rectangular shape; (3) in the elliptic microcracks, the longer of the length (major semi-axis) induces a smaller fluid pressure and velocity amplitudes, whereas the width (minor axis) has little effect; (4) the direction of the microcracks (major axial direction) has an limited influence area around about 1/15 of the osteon cross-sectional area. Conclusions: This model permits the linking of the external loads and microcracks to the osteonal fluid pressure and velocity, which can be used for other purpose associate microcracks with the mechanotransduction and bone remodeling.
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
  • Shanxi Key Laboratory of Material Strength & Structural Impact, and College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, P.R. China
autor
  • Shanxi Key Laboratory of Material Strength & Structural Impact, and College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, P.R. China
autor
  • Shanxi Key Laboratory of Material Strength & Structural Impact, and College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, P.R. China
autor
  • College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
autor
  • Shanxi Key Laboratory of Material Strength & Structural Impact, and College of Mechanics, Taiyuan University of Technology, Taiyuan 030024, P.R. China
Bibliografia
  • [1] BAKKER A., KLEIN-NULEND J., BURGER E., Shear stress inhibits while disuse promotes osteocyte apoptosis, J. Biochemical and Biophysical Research Communications, 2004, 320, 1163–1168.
  • [2] BURR D.B., The contribution of the organic matrix to bone’s material properties, J. Bone., 2002, 31, 8–11.
  • [3] CARDOSO L., FRITTON S.P., GAILANI G. et al., Advances in assessment of bone porosity, permeability and interstitial fluid flow, J. Biomechanics, 2013, 46, 253–265.
  • [4] DOBLARÉ M., GARCÍA J.M., GÓMEZ M.J., Modelling bone tissue fracture and healing: a review, J. Engineering Fracture Mechanics, 2004, 71, 217–238.
  • [5] GALLEY S.A., MICHALEK D.J., DONAHUE S.W., A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone, J. Biomechanics, 2006, 39, 2026–2033.
  • [6] GOULETA G.C., HAMILTON N., COOPER D. et al., Influence of vascular porosity on fluid flow and nutrient transport in loaded cortical bone, J. Biomechanics, 2008, 41, 2169–2175.
  • [7] MCNAMARA L.M., PRENDERGAST P.J., Bone remodeling algorithms incorporating both strain and microdamage stimuli, J. Biomechanics, 2007, 40, 1381–1391.
  • [8] MOHSIN S., O’BRIEN F.J., LEE T.C., Microcracks in compact bone: a three-dimensional view, J. Anat., 2006, 209, 119–124.
  • [9] NGUYEN V.H., LEMAIRE T., NAILI S., Anisotropic poroelastic hollow cylinders with damaged periphery under harmonically axial loadings: relevance to bone remodelling, J. Multidiscipline Modeling in Materials and Structures, 2009, 5, 205–222.
  • [10] NGUYEN V.H., LEMAIRE T, NAILI S., Influence of interstitial bone microcracks on strain-induced fluid flow, J. Biomech Model Mechanobiol, 2011, 10, 963–972.
  • [11] PIDAPARTI R.M.V., Microdamage simulation in a bone tissue using finite element analysis, J. Elsevier Science Ltd., 1997, 3, 463–466.
  • [12] SCHAFFLER M.B., CHOI K., MILGROM C., Aging and matrix microdamage accumulation in human compact bone, J. Bone., 1995, 17, 521–525.
  • [13] STEPHEN C.C., Bone poroelasticity, J. Biomechanics, 1999, 32, 217–238.
  • [14] VERGANI L., COLOMBO C., LIBONATI F., Crack propagation in cortical bone: a numerical study, J. Procedia Materials Science, 2014, 3, 1524–1529.
  • [15] WU X.G., CHEN W.Y., A hollow osteon model for examining its poroelastic behaviors: mathematically modeling an osteon with different boundary cases, J. Mechanics/A Solids, 2013, 40, 34–49.
  • [16] WU X.G., CHEN W.Y., Poroelastic behaviors of the osteon, a comparison of two theoretical osteon models, J. Acta Mechanica Sinica, 2013, 29, 612–621.
  • [17] WU X.G., CHEN W.Y., GAO Z.P. et al., The effects of Haversian fluid pressure and harmonic axial loading on the poroelastic behaviors of a single osteon, J. Science China Physics, Mechanics & Astronomy, 2012, 55, 1646–1656.
  • [18] WU X.G., CHEN W.Y., WANG D.X., A mathematical osteon model for examining its poroelastic behaviors, J. Applied Mathematics and Mechanics, 2013, 34, 405–416.
  • [19] WU X.G., WANG Y.Q., WU X.H. et al., Effects of microcracks on the poroelastic behaviors of a single osteon, J. Science China Physics, Mechanics & Astronomy, 2014, 57, 2161–2167.
  • [20] YIN L., VENKATESAN S., WEBB D. et al., Effect of cryoinduced microcracks on microindentation of hydrated cortical bone tissue, J. Materials Characterization, 2009, 60, 783–791.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f81192d-d262-4fe0-b76b-915afa2e3627
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.