PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal degradation kinetics of poly(propylene succinate) prepared with the use of natural origin monomers

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Kinetyka degradacji termicznej poli(bursztynianu propylenu) zsyntetyzowanego z monomerów pochodzenia naturalnego
Konferencja
Polyurethanes 2017 – materials friendly to humans and environment (08–11.10. 2017 ; Ustroń, Poland)
Języki publikacji
EN
Abstrakty
EN
Linear bio-based polyester polyols were prepared with the use of succinic acid and 1,3-propanediol (both with natural origin). Tetraisopropyl orthotitanate (TPT) was used as a catalyst. In order to determine the effect of various synthesis temperature conditions on the thermal degradation kinetics, nine sequences of temperature conditions were used during two-step polycondensation reaction. Thermogravimetric analysis was conducted with the use of DSC-TG/QMS method (differential scanning calorimetry-coupled with thermogravimetry and quadrupole mass spectrometry). The results indicated high thermal stability of the obtained materials. They undergo a one-step thermal decomposition with the temperature of maximum rate of weight loss at ca. 405 °C. Moreover, the thermal degradation kinetics was determined with the use of Ozawa, Flynn and Wall as well as Kissinger methods. The highest thermal degradation activation energy was equal to 196.4 kJ/mol.
PL
Liniowe bio-poliole poliestrowe syntetyzowano z wykorzystaniem substratów pochodzenia naturalnego: kwasu bursztynowego oraz 1,3-propanodiolu. W charakterze katalizatora stosowano ortotytanian tetraizopropylu (TPT). W celu określenia wpływu temperatury syntezy na kinetykę degradacji termicznej, podczas dwuetapowej reakcji polikondensacji zastosowano różne warunki temperaturowe w dziewięciu sekwencjach. Analizę termograwimetryczną prowadzono za pomocą metody różnicowej kalorymetrii skaningowej sprzężonej z termograwimetrią i kwadrupolową spektrometrią masową(DSC-TG/QMS). Wyniki badań potwierdziły dużą stabilność termiczną materiałów oraz jednoetapowość procesu rozkładu temperaturowego z temperaturą maksymalnego rozkładu wynoszącą ok. 405 °C. Określono też kinetykę degradacji termicznej metodami Ozawy, Flynna i Walla oraz Kissingera. Największa wartość energii aktywacji degradacji termicznej wyniosła 196,4 kJ/mol.
Czasopismo
Rocznik
Strony
700--707
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Chemistry, Department of Polymers Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Polish Academy of Sciences, Institute of High Pressure Physics, Laboratory of Nanostructures for Photonic and Nanomedicine, Sokołowska 29/37, 01-142 Warszawa, Poland
  • Gdańsk University of Technology, Faculty of Chemistry, Department of Polymers Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Gdańsk University of Technology, Faculty of Chemistry, Department of Polymers Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Djonlagic J., Nicolic M.S.: “A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications” Chapter 6, Royal Society of Chemistry, United Kingdom 2011, pp. 149–196.
  • [2] Bikiaris D.N., Achilias D.S.: Polymer 2006, 47, 4851. http://dx.doi.org/10.1016/j.polymer.2008.06.026
  • [3] Król P.: Progress in Materials Science 2007, 52, 915. http://dx.doi.org/10.1016/j.pmatsci.2006.11.001
  • [4] Kim Y.D., Kim S.C.: Polymer Degradation and Stability 1998, 62, 343. http://dx.doi.org/10.1016/S0141-3910(98)00017-2
  • [5] Rutkowska M., Krasowska K., Heimowska A. et al.: Polymer Degradation and Stability 2002, 76, 233. http://dx.doi.org/10.1016/S0141-3910(02)00019-8
  • [6] Ionescu M.: “Chemistry and Technology of Polyols for Polyurethane”, First Ed., Rapra Technology Limited, United Kingdom 2005. http://dx.doi.org/10.1002/pi.2159
  • [7] Miller R., Janssen R., Theunissen L.: “Evaluating the Properties and Performance of Susterra® 1,3-Propanediol and BiosucciniumTM Sustainable Succinic Acid in TPU Applications”. http://www.duponttateandlyle.com/sites/default/files/120910%20DuPont%20Tate%26Lyle%20and%20Reverdia%20CPI%20paper%202012.pdf
  • [8] Delhomme C., Weuster-Botz D., Kühn F.E.: Green Chemistry 2009, 11, 13. http://dx.doi.org/10.1039/b810684c
  • [9] Bechthold I., Bretz K., Kabasci S. et al.: Chemical Engineering Technology 2008, 31, 647. http://dx.doi.org/10.1002/ceat.200800063
  • [10] Kamzolova S.V., Yusupova A.I., Dedyukhina E.G. et al.: Food Technology and Biotechnology 2009, 47, 144.
  • [11] Nghiem N., Davison B., Suttle B., Richardson G.: Applied Biochemistry and Biotechnology 1997, 63/65, 565. http://dx.doi.org/10.1007/BF02920454
  • [12] de Jong E., Higson A., Walsh P., Wellisch M.: “IEA Bioenergy” 2011. h t t p : // w w w. q i b e b t . a c . c n / x w z x / k y d t / 2 0 1 2 0 2 /P020120223409482956847.pdf
  • [13] https://www.bio-amber.com (2016)
  • [14] http://www.reverdia.com/products/biosuccinium/ (2016)
  • [15] http://www.myriant.com (2016)
  • [16] http://www.succinity.com/ (2016)
  • [17] http://www.duponttateandlyle.com/susterra-technical-information (2016)
  • [18] Kaur G., Srivastava A.K., Chand S.: Biochemical Engineering Journal 2012, 64, 106. http://dx.doi.org/10.1016/j.bej.2012.03.002
  • [19] WO 2014 152 665A1, WO 2014 152 665A1 (2014).
  • [20] Szymanowska-Powałowska D.: Electronic Journal of Biotechnology 2014, 17, 322. http://dx.doi.org/10.1016/j.ejbt.2014.10.001
  • [21] Drozdzyńska A., Pawlicka J., Kubiak P. et al.: New Biotechnology 2014, 31, 402. http://dx.doi.org/10.1016/j.nbt.2014.04.002
  • [22] http://www.duponttateandlyle.com/sites/default/files/files/presentations/Susterra%28r%29%20in%20Engine%20Coolants%2005.25.2010.pdf, DuPont Tate&Lyle Bioprod, (2010).
  • [23] http://www.duponttateandlyle.com (2016)
  • [24] http://verdezyne.com/products/adipic-acid/
  • [25] http://www.rennovia.com/product-pipeline/
  • [26] Lu J., Wu L., Li B.G.: ACS Sustainable Chemistry and Engineering 2017, 5, 61 596. http://dx.doi.org/10.1021/acssuschemeng.7b01050
  • [27] Carlos Morales-Huerta J., Martínez De Ilarduya A., Muñoz-Guerra S.: Polymer 2016, 87, 148. http://dx.doi.org/10.1016/j.polymer.2016.02.003
  • [28] Papageorgiou G.Z., Papageorgiou D.G., Tsanaktsis V., Bikiaris D.N.: Polymer 2015, 62, 28. http://dx.doi.org/10.1016/j.polymer.2015.01.080
  • [29] Zhou W., Zhang Y., Xu Y. et al.: Polymer Degradation and Stability 2014, 109, 21. http://dx.doi.org/10.1016/j.polymdegradstab.2014.06.018
  • [30] Petrović Z.S., Milić J., Zhang F., Ilavsky J.: Polymer 2017, 121, 26. http://dx.doi.org/10.1016/j.polymer.2017.05.072
  • [31] Datta J., Głowińska E.: Industrial Crops and Products 2014, 61, 84. http://dx.doi.org/10.1016/j.indcrop.2014.06.050
  • [32] Głowińska E., Datta J.: Cellulose 2016, 23, 581. http://dx.doi.org/10.1007/s10570-015-0825-6
  • [33] Głowińska E., Datta J.: Cellulose 2015, 22, 2471. http://dx.doi.org/10.1007/s10570-015-0685-0
  • [34] Saralegi A., Rueda L., Fernández-D’Arlas B. et al.: Polymer International 2013, 62, 106. http://dx.doi.org/10.1002/pi.4330
  • [35] Chrissafis K., Paraskevopoulos K.M., Bikiaris D.N.: Polymer Degradation and Stability 2006, 91, 60. http://dx.doi.org/10.1016/j.polymdegradstab.2005.04.028
  • [36] Parcheta P., Koltsov I., Datta J.: Polymer Degradation and Stability 2018, 151, 90. http://dx.doi.org/10.1016/j.polymdegradstab.2018.03.002
  • [37] Rowe A.A., Tajvidi M., Gardner D.J.: Journal of Thermal Analysis and Calorimetry 2016, 126, 1371. http://dx.doi.org/10.1007/s10973-016-5791-1
  • [38] Bikiaris D.N., Papageorgiou G.Z., Giliopoulos D.J., Stergiou C.A.: Macromolecular Bioscience 2008, 8, 728. http://dx.doi.org/10.1002/mabi.200800035
  • [39] Parcheta P., Datta J.: Polymer Testing 2018, 67, 110. http://dx.doi.org/10.1016/j.polymertesting.2018.02.022
  • [40] Parcheta P., Datta J.: Journal of Thermal Analysis and Calorimetry 2017, 130, 197. http://dx.doi.org/10.1007/s10973-017-6376-3
  • [41] Chrissafis K., Paraskevopoulos K.M., Bikiaris D.N.: Thermochimica Acta 2005, 435, 142. http://dx.doi.org/10.1016/j.tca.2005.05.011
  • [42] Zorba T., Chrissafis K., Paraskevopoulos K.M., Bikiaris D.N.: Polymer Degradation and Stability 2007, 92, 222. http://dx.doi.org/10.1016/j.polymdegradstab.2006.11.009
  • [43] Bikiaris D.N., Chrissafis K., Paraskevopoulos K.M.: Polymer Degradation and Stability 2007, 92, 525. http://dx.doi.org/10.1016/j.polymdegradstab.2007.01.022
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f7e0f90-a528-41d5-8cca-4a5d0356fb6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.