PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Balance control via tactile biofeedback in children with cerebral palsy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Children with cerebral palsy have limitations in utilizing neural information to perform smooth movement and maintain balance during walking. This study aimed to develop a wearable sensor that tracks balance continuously and provides haptic biofeedback to its user through real-time vibration stimulus to assist patients with balance and postural control impairments such as cerebral palsy. Methods: Twelve children with cerebral palsy and 12 age-matched typically developed children used the sensor during walking at a self- -selected speed. The lower extremity joint kinematics, center of mass, and spatial-temporal parameters were recorded with Xsens MVN during “with” and “without” biofeedback conditions. Results: The sensor did not disturb healthy gait. Pearson correlation coefficient and Root Mean Square Error techniques showed that biofeedback regulated the gait parameters and trunk stability of the CP group. The extended stance percentage (without BF: 73.91% ± 10.42, with BF: 63.53% ± 2.99), step width (without BF: 0.20 m ± 0.05, with BF: 0.18 m ± 0.07), and step time (without BF: 1.55 s ± 1.07, with BF: 0.73 s ± 0.14) parameters decreased. Similarly, cadence and walking speed increased. Conclusions: Obtained results indicated that this wearable sensor can be integrated into the physical therapy and rehabilitation process of children with balance and postural control impairments to improve motor learning and balance control. The present findings contribute to a better understanding of the adaptation of innovative engineering applications with rehabilitation processes, which, in turn, could assist patients with balance impairments and facilitate their integration into society.
Rocznik
Strony
161--171
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Acibadem Mehmet Ali Aydinlar University, Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Istanbul, Turkey
autor
  • Acibadem Mehmet Ali Aydinlar University, Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Istanbul, Turkey
Bibliografia
  • [1] ARGUNSAH BAYRAM H., YALCIN B., The influence of biofeedback on physiological and kinematic variables of treadmill running, International Journal of Performance Analysis in Sport, 2021, 21, 1, 156–169, DOI: 10.1080/24748668.2020.1861898.
  • [2] ARNESON C.L., DURKIN M.S., BENEDICT R.E., KIRBY R.S., YEARGIN-ALLSOPP M., VAN NAARDEN BRAUN K., DOERNBERG N.S., Prevalence of Cerebral Palsy: Autism and Developmental Disabilities Monitoring Network, Three Sites, United States, Disability and Health Journal, 2009, 2 (1), 45–48, DOI: 10.1016/ j.dhjo.2008.08.001.
  • [3] ASSAIANTE C., BARLAAM F., CIGNETTI F., VAUGOYEAU M., Body schema building during childhood and adolescence: A neurosensory approach, Neurophysiologie Clinique/Clinical Neurophysiology, 2014, 44 (1), 3–12. DOI: 10.1016/j.neucli.2013.10.125.
  • [4] BARRA J., MARQUER A., JOASSIN R., REYMOND C., METGE L., CHAUVINEAU V., PÉRENNOU D., Humans use internal models to construct and update a sense of verticality, Brain, 2010, 133 (12), 3552–3563, DOI: 10.1093/brain/awq311.
  • [5] BISHOP L., STEIN J., Three upper limb robotic devices for stroke rehabilitation: a review and clinical perspective, Neurorehabilitation, 2013, 33 (1), 3–11, DOI: 10.3233/NRE-130922.
  • [6] BRIGGS A.M., GREIG A.M., WARK J.D., FAZZALARI N.L., BENNELL K.L., A review of anatomical and mechanical factors affecting vertebral body integrity, Int. J. Med. Sci., 2004, 1 (3), 170–80, DOI: 10.7150/ijms.1.170.
  • [7] CHRISTIANSEN C.L., BADE M.J., DAVIDSON B.S., DAYTON M.R., STEVENS-LAPSLEY J.E., Effects of weight-bearing biofeedback training on functional movement patterns following total knee arthroplasty: a randomized controlled trial, The Journal of Orthopeadical and Sports Physical Therapy, 2015, 45 (9), 647–655, DOI: 10.2519/jospt.2015.5593.
  • [8] DUNCAN A.F., MATTHEWS M.A., Neurodevelopmental Outcomes in Early Childhood, Clin. Perinatol., 2018, 45 (3), 377–392, DOI: 10.1016/j.clp.2018.05.001.
  • [9] EL SHEMY S.A., Trunk endurance and gait changes after core stability training in children with hemiplegic cerebral palsy: A randomized controlled trial, J. Back Musculoskelet. Rehabil., 2018, 31 (6), 1159–1167, DOI: 10.3233/BMR-181123.
  • [10] GRAHAM D., PAGET S.P., WIMALASUNDERA N., Current thinking in the health care management of children with cerebral palsy, Med. J. Aust., 2019, 210 (3), 129–135, DOI: 10.5694/mja2.12106.
  • [11] HARUYAMA K., KAWAKAMI M., OTSUKA T., Effect of core stability training on trunk function, standing balance, and mobility in stroke patients: a randomized controlled trial, Neurorehabil. Neural. Repair., 2017, 31 (3), 240–249, DOI: 10.1177/1545968316675431.
  • [12] HUANG C., CHEN Y., CHEN G., XIE Y., MO J., LI K., HUANG R., PAN G., CAI Y., ZHOU L., Efficacy and safety of core stability training on gait of children with cerebral palsy: A protocol for a systematic review and meta-analysis, Medicine, 2020, 99 (2), 1–5, DOI: 10.1097/MD.0000000000018609.
  • [13] JEKA J., OIE K.S., KIEMEL T., Multisensory information for human postural control: integrating touch and vision, Experimental Brain Research, 2000, 134 (1), 107–125, DOI: 10.1007/ s002210000412.
  • [14] JEKA J.J., LACKNER J.R., Fingertip contact influences human postural control, Experimental Brain Research, 1994, 100 (3), 495–502, DOI: 10.1007/BF02738408.
  • [15] JIANG Y., AKHAVAN AGHDAM Z., TSIMRING L., HAO N., Coupled feedback loops control the stimulus-dependent dynamics of the yeast transcription factor Msn2, Journal of Biological Chemistry, 2017, 292 (30), 12366–12372, DOI: 10.1074/jbc.C117.800896.
  • [16] KREBS H.I., LADENHEIM B., HIPPOLYTE C., MONTERROSO L., MAST J., Robot-assisted task-specific training in cerebral palsy, Dev. Med. Child. Neurol., 2009, 51 Suppl 4, 140–145, DOI: 10.1111/j.1469-8749.2009.03416.x.
  • [17] LIANG W.R., WU X.P., ZHANG Q.F., XIN L., YU L.M., Effects of Strengthened Core Stability Training with Band on Motor Function and Balance in Children with Spastic Cerebral Palsy, Chinese Journal of Rehabilitation Theory and Practice, 2018, 24 (1), 97–100.
  • [18] MARSCHIK P.B., POUSTKA L., BÖLTE S., ROEYERS H., NORDAHL- -HANSEN A., Editorial: Trajectories in Developmental Disabilities: Infancy-Childhood-Adolescence, Front Psychiatry, 2022, 13, 893305, DOI: 10.3389/fpsyt.2022.893305.
  • [19] MICHAEL-ASALU A., TAYLOR G., CAMPBELL H., LELEA L.L., KIRBY R.S., Cerebral Palsy: Diagnosis, Epidemiology, Genetics, and Clinical Update, Adv. Pediatr., 2019, 66, 189–208, DOI: 10.1016/j.yapd.2019.04.002.
  • [20] OUENDI N., HUBAUT R., PELAYO S., ANCEAUX F., WALLARD L., The rehabilitation robot: factors influencing its use, advantages and limitations in clinical rehabilitation, Disabil. Rehabil. Assist. Technol., 2022, 1–12, DOI: 10.1080/17483107.2022.2107095.
  • [21] PIERRET J., CAUDRON S., PAYSANT J., BEYAERT C., Impaired postural control of axial segments in children with cerebral palsy, Gait Posture, 2021, 86, 266–272, DOI: 10.1016/ j.gaitpost.2021.03.012.
  • [22] POGONCHENKOVA I.V., KHAN M.A., KORCHAZHKINA N.B., NOVIKOVA E.V., BOKOVA I.A., LYAN N.A., The application of the physical factors for the medical rehabilitation of the children presenting with neurogenic dysfunction of the bladder, Vopr. Kurortol. Fizioter. Lech. Fiz. Kult., 2017, 94 (6), 53– 58, DOI: 10.17116/kurort201794653-58.
  • [23] REED C.A., FORD K.R., MYER G.D., HEWETT T.E., The effects of isolated and integrated 'core stability training on athletic performance measures, Sports Med., 2012, 42 (8), 697–696, DOI: 10.2165/11633450.
  • [24] SCHMUCKLER M.A., TANG A., Multisensory factors in postural control: varieties of visual and haptic effects, Gait and Posture, 2019, 71, 87–91, DOI: 10.1016/j.gaitpost.2019.04.018.
  • [25] SEDIEK R.H., EL-TOHAMY A.M., NASSAR I., Relation Between Core-Stability and Functional Abilities in Children with Spastic Cerebral Palsy, Trends Applied Sci. Res., 2016, 11 (1), 19–5, DOI: 10.1111/dmcn.14644.
  • [26] SMIDT G., ARORA J., JOHNSTON R., Accelerographic analysis of several types of walking, American Journal of Physical Medicine and Rehabilitation, 1971, 50 (6), 285–300, PMID: 5141651.
  • [27] VITRIKAS K., DALTON H., BREISH D., Cerebral Palsy: An Overview, Am. Fam. Physician., 2020, 101 (4), 213–220, PMID: 32053326.
  • [28] WALLARD L., BRIL B., DIETRICH G., KERLIRZIN Y., BREDIN J., The role of head stabilization in locomotion in children with cerebral palsy, Ann. Phys. Rehabil. Med., 2012, 55 (9–10), 590–600, DOI: 10.1016/j.rehab.2012.10.004.
  • [29] WALLARD L., DIETRICH G., KERLIRZIN Y., BREDIN J., Balance control in gait children with cerebral palsy, Gait Posture, 2014, 40 (1), 43–47, DOI: 10.1016/j.gaitpost.2014.02.009.
  • [30] ZAZULAK B.T., HEWETT T.E., REEVES N.P., GOLDBERG B., CHOLEWICKI J., The effects of core proprioception on knee injury: a prospective biomechanical-epidemiological study, Am. J. Sports Med., 2007, 35 (3), 368–373, DOI: 10.1177/ 0363546506297909.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f7b3637-41bc-4148-893c-83edd702d1a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.