PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of thermophysical properties of frozen soil on the temperature of the cast-in-place concrete pile in a negative temperature environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermophysical properties of frozen soil have a great influence on the quality of cast-in-place concrete piles. In this paper, the embedded concrete temperature monitoring system is used to test the variation law of the concrete temperature during the construction of the bored pile. Thermophysical properties of permafrost around piles are tested. Based on the theory of three-phase unsteady heat conduction of soil, the influence of specific heat capacity, thermal conductivity, thermal diffusivity, and latent heat of phase transformation on the temperature change of a concrete pile is systematically studied. The thermal parameter is obtained which exerts the most significant influence on the temperature field. According to the influence degree of frozen soil on pile temperature, the order from high to low is thermal conductivity, thermal diffusivity, latent heat of phase change, and specific heat capacity. The changes in pile wall temperature caused by the change of these properties range between 2.60–10.97◦C, 1.49– 9.39◦C, 2.16–2.36◦C, and 0.24–3.45◦C, respectively. The change percentages of parameters vary between 35.77–47.12%, 12.22–40.20%, 12.46–32.25%, and 3.83–20.31%, respectively. Therefore, when designing and constructing concrete foundation piles, the influence of the thermal conductivity of frozen soil on concrete pile temperature should be considered first. The differences between the simulated and measured temperature along the concrete pile in the frozen soil varying with the respective thermal properties are: –2.99– 7.98◦C, –1.89–4.99◦C, –1.20–1.99◦C, and –1.76–1.27◦C. Polyurethane foam and other materials with small thermal conductivity can be added around the pile to achieve pile insulation.
Rocznik
Strony
21--48
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Northeast Forestry University, College of Home and Art Design, Harbin, 150040, China
autor
  • Northeast Forestry University, College of Civil Engineering, Harbin, 150040, China
autor
  • Northeast Forestry University, College of Civil Engineering, Harbin, 150040, China
autor
  • Northeast Forestry University, College of Civil Engineering, Harbin, 150040, China
Bibliografia
  • [1] Zhou Y.W., Guo D.X., Qiu G.Q.: Quaternary permafrost in China. Quaternary Science Reviews 6(1991), 10, 5114–517.
  • [2] Liu N.F., Li N., He M., Xu S.: Analyzing the factors controlling the bearing capacity of cast-in-place piles based on a thermo-hydro-mechanical coupling model. J. Glaciol. Geocryol. 6(2014), 36, 1471–1478.
  • [3] Lu X.Y., Liu Y.Y., Bian H.B., Sun Z.H., Wang C. Y., Qiu X. M.: The application of extruded polystyrene boards in frost heaving prevention of concrete lining channel. J. Shandong Univ. (Nat. Sci. Ed.) 3(2019), 50, 460–467.
  • [4] Wyczółkowski R., Strychalska D., Bagdasaryan V.: Correlations for the thermal conductivity of selected steel grades as a function of temperature in the range of 0–800◦C. Arch. Thermodyn. 43(2022), 29–45.
  • [5] Yu D., Tang H.Y., Ma W.Y., Wang Y., Lv W.B.: The effect of moldling temperature on thermal stresses of massive concrete roadbed structure. J. Rail. Sci. Eng. 9(2019), 2150–2155 (in Chinese).
  • [6] Li J.N., Sun X.X.: Influence of hydration heat on temperature distribution field along piles in warm permafrost regions. J. Rail. Sci. Eng. 12(2019), 2984–2990 (in Chinese)
  • [7] Huang J.W.: Study on temperature field of pavement structure of old cement concrete pavement with asphalt layer. South China Univ. Technol., Guangzhou 2017 (in Chinese).
  • [8] Song C.N.: Research on pavement temperature field and pavement working environment temperature index in desert area. Chang’an Univ., Xi’an 2006 (in Chinese).
  • [9] Ge Y.J., Zhai D., Zhang G.Q.: Experimental study on temperature field of concrete cable-stayed bridge. China J. Highw. Transp. (1996), 2, 76–83 (in Chinese).
  • [10] Huang Z.G.: Field monitoring and 02erical analysis of temperature field of long-span suspension bridges. South China Univ. Technol., Guangzhou 2016 (in Chinese).
  • [11] Hu C.B., Zeng H.G.: A study on monitor measurement of temperature field of cement concrete pavements structure in Fujian province. Highway (2007), 8, 69–77 (in Chinese).
  • [12] Liu W.Y., Geng Y.M.: The influence of thermal parameters on the temperature field of concrete structures. China Concrete Cement Prod. (2005), 1, 11–15 (in Chinese).
  • [13] Xiao J.Z., Song Z.W., Zhao Y., Qian Y.H.: Analysis of solar temperature action for concrete structure based on meteorological parameters. China J. Civ. Eng. 43(2010), 4, 30–36 (in Chinese).
  • [14] Zeng S.Z.: Experimental study on temperature field of concrete structure in freezethaw environment. Harbin Inst. Technol. 2016 (in Chinese).
  • [15] Li Y.: Simulation calculation of temperature field of mass concrete based on independent covering numerical manifold method. CSTA, 2015 (in Chinese).
  • [16] Cai X.Y.: Theoretical study on indoor fire environment and temperature field calculation of concrete structure. Sichuan Archit. (2007), 5, 56–58 (in Chinese).
  • [17] Daghsen K., Lounissi D., Bouaziz N.: A universal model for solar radiation exergy accounting: Case study of Tunisia. Archiv. Thermodyn. 43(2022), 2, 97–118.
  • [18] Alekseev A.Z., Zorin D.: Interaction of the augercast micropiles with permafrost. IOP Conf. Ser.: Mater. Sci. Eng. 365(2018), 042056.
  • [19] Fajobi M.A., Loto R.T., Oluwole O.O.: Corrosion behavior of steel in acidic medium for petroleum systems. MACEM 1(2020), 1, 25–26.
  • [20] Zhang D., Mamesh Z., Sailauova D., Shon C.S., Lee D., Kim J.: Temperature distributions inside concrete sections of renewable energy storage pile foundations. Appl. Sci. 9(2019), 22, 4776.
  • [21] Xiao S., Suleiman M.T., Al-Khawaja M.: Investigation of effects of temperature cycles on soil-concrete interface behavior using direct shear tests. Soils Found. 59(2019), 5, 1213–1227.
  • [22] Wang Y., Zhu D.Y., Ye J.S.: Parametric analysis of concrete box-girder thermal action. Mod. Transport. Technol. 12(2008), 5, 95–99 (in Chinese).
  • [23] Zhang W., Zhang L.L., Zhong N.: Temperature field research based on main cable thermal parameters of suspension bridge. J. Chongqing Jiaotong Univ. (Nat. Sci.) 1(2016), 35, 1–4 (in Chinese).
  • [24] Ahmad S.N., Prakash O.: Thermal performance evaluation of an earth-to-air heat exchanger for the heating mode applications using an experimental test rig. Archiv. Thermodyn. 43(2022), 1, 185–207.
  • [25] Lu Y., Yu W.B., Guo M., Liu W.: Spatiotemporal variation characteristics of land cover and land surface temperature in Mohe County, Heilongjiang Province. J. Glaciol Geocryol. 39(2017), 5, 1137–1147 (in Chinese).
  • [26] Jin H.J., Wang S.L., Lu L.Z., Yu S.P.: Features of permafrost degradation in Hinggan Mountains, Northeastern China. Sci. Geogr. Sinica 29(2009), 2, 223–228 (in Chinese).
  • [27] Jehhef K.A., Abas Siba M.A.A.: Effect of surfactant addition on the nanofluids properties: A review. Acta Mech. Malay. 2(2019), 2, 1–19.
  • [28] Chen L., Yu W.B., Yi X., Wu Y., Ma Y.: Application of ground penetration radar to permafrost survey in Mohe County, Heilongjiang Province. J. Glaciol. Geocryol. 37(2015), 3, 723-730 (in Chinese).
  • [29] Yu W., Guo M., Chen L., Lai Y.M., Yi X., Xu L.L.: Influence of urbanization on permafrost: A case study from Mohe County, Northernmost China. Cryosphere Discuss. 8(2014), 4, 4327–4348.
  • [30] China meteorological data network. https://data.cma.cn/data/cdcindex/cid/6d1b5efbdcbf9a58.html (accessed 17 May 2022).
  • [31] Andersland O.B., Ladanyi B.: Frozen Ground Engineering (2nd Edn.). Wiley, 2004., (China Architecture&Building Press, Beijing 2003), (accessed 10 April 2022).
  • [32] Zheng X.Q., Fan G.S., Xing S.Y.: Movement of Water in Seasonal Unsaturated Freeze-Thaw Soil. Geological Publishing House, Beijing 2002, 22–27 (in Chinese).
  • [33] https://www.researchgate.net/figure/Measurement-of-thermal-properties-usingthe-ISOMET-2104_fig2_311089537 (accessed 7 May 2022).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f751955-45b9-4a85-833f-64dd0268d7b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.