PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study on the static bending and forced vibration of triclinic plate with arbitrary boundary conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Despite the potential for more realistic results, the behavior of anisotropic structures has not been comprehensively studied. Consequently, a numerical investigation is conducted to examine both static and dynamic deflections in nano-sized plates composed of triclinic materials, which necessitate a more complex formulation involving 21 independent elastic components. To model the triclinic plate, a higher order shear deformable theory is employed, which includes 7 unknowns and is combined with Eringen nonlocal model in differential form. The differential quadrature method is then utilized as a numerical tool to solve the problem, accounting for various edge boundary conditions. Subsequently, numerical examples are provided to demonstrate the behavior of static and time-dependent transversal deflections, as well as normal and shear stresses, in rectangular triclinic plates, considering nonlocality, geometrical parameters, and boundary conditions. Moreover, a unique comparison is presented to highlight the significance of anisotropy when compared to isotropic approximations. The data reported herein not only represents a mechanical investigation but also serves as a valuable reference for future research on triclinic materials.
Rocznik
Strony
art. e228, 1--32
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr. wzory
Twórcy
  • Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
  • Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
Bibliografia
  • 1. Bruns TE, Tortorelli DA. Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng. 2001;190(26-27):3443-59.
  • 2. Neves A, Ferreira A, Carrera E, Cinefra M, Roque C, Jorge R, Soares CM. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos B Eng. 2013;44(1):657-674.
  • 3. Ferreira A, Carrera E, Cinefra M, Viola E, Tornabene F, Fantuzzi N, Zenkour A. Analysis of thick isotropic and cross-ply laminated plates by generalized differential quadrature method and a unified formulation. Compos B Eng. 2014;58:544-552.
  • 4. Ishii Y, Biwa S, Adachi T. Non-collinear interaction of guided elastic waves in an isotropic plate. J Sound Vib. 2018;419:390-404.
  • 5. Ahmadian M, Zangeneh MS. Vibration analysis of orthotropic rectangular plates using superelements. Comput Methods Appl Mech Eng. 2002;191(19–20):2097-2103.
  • 6. Wang X. Nonlinear stability analysis of thin doubly curved orthotropic shallow shells by the differential quadrature method. Comput Methods Appl Mech Eng. 2007;196(17–20):2242-51.
  • 7. Karami B, Janghorban M. On the mechanics of functionally graded nanoshells. Int J Eng Sci. 2020;153: 103309.
  • 8. Thai CH, Ferreira A, Phung-Van P. Free vibration analysis of functionally graded anisotropic microplates using modified strain gradient theory. Eng Anal Boundary Elem. 2020;117:284-298.
  • 9. Bahrami K, Afsari A, Janghorban M, Karami B. Static analysis of monoclinic plates via a three-dimensional model using differential quadrature method. Struct Eng Mech. 2019;72(1):131-139.
  • 10. Batra R, Qian L, Chen L. Natural frequencies of thick square plates made of orthotropic, trigonal, monoclinic, hexagonal and triclinic materials. J Sound Vib. 2004;270(4):1074-86.
  • 11. Karami B, Janghorban M, Fahham H. On the stress analysis of anisotropic curved panels. Int J Eng Sci. 2022;172: 103625.
  • 12. Karami B, Janghorban M, Tounsi A. Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Struct. 2018;129:251-264.
  • 13. Cai W, Arsenlis A, Weinberger CR, Bulatov VV. A non-singular continuum theory of dislocations. J Mech Phys Solids. 2006;54(3):561-587.
  • 14. Aifantis EC. Exploring the applicability of gradient elasticity to certain micro/nano reliability problems. Microsyst Technol. 2009;15(1):109-15.
  • 15. Arefi M, Rabczuk T. A nonlocal higher order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nano shell. Compos B Eng. 2019;168:496-510.
  • 16. Pan K, Fang J. Nonlocal interaction of a dislocation with a crack. Arch Appl Mech. 1993;64(1):44-51.
  • 17. Ghayesh MH, Farokhi H, Amabili M. Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Compos B Eng. 2013;50:318-24.
  • 18. Karami B, Shahsavari D. On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nano-shells reinforced with graphene-nanoplatelets. Comput Methods Appl Mech Eng. 2020;359: 112767.
  • 19. Shahsavari D, Karami B, Tounsi A. Wave propagation in a porous functionally graded curved viscoelastic nano-size beam. Waves Random Complex Media. 2023. https://doi.org/10.1080 17455030.2022.2164376.
  • 20. Aydogdu M. Longitudinal wave propagation in nano-rods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics. Int J Eng Sci. 2012;56:17-28.
  • 21. Wang C, Zhang Z, Challamel N, Duan W. Calibration of eringen’s small length scale coefficient for initially stressed vibrating nonlocal euler beams based on microstructured beam model. J Phys D Appl Phys. 2013;46(34): 345501.
  • 22. Eringen AC. Nonlocal polar elastic continua. Int J Eng Sci. 1972;10(1):1-16.
  • 23. Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys. 1983;54(9):470310.
  • 24. Eringen AC. Theory of nonlocal elasticity and some applications, Report. Princeton Univ NJ Dept of Civil Engineering; 1984.
  • 25. Eringen AC, Edelen D. On nonlocal elasticity. Int J Eng Sci. 1972;10(3):233-48.
  • 26. Adhikari S, Karličić D, Liu X. Dynamic stiffness of nonlocal damped nano-beams on elastic foundation. Eur J Mech-A/Solids. 2021;86: 104144.
  • 27. Romano G, Barretta R. Nonlocal elasticity in nanobeams: the stress-driven integral model. Int J Eng Sci. 2017;115:14-27.
  • 28. Merazka B, Bouhadra A, Menasria A, Selim MM, Bousahla AA, Bourada F, Tounsi A, Benrahou KH, Tounsi A, Al-Zahrani MM. Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations. Steel Compos Struct Int J. 2021;39(5):631-43.
  • 29. Hebali H, Chikh A, Bousahla AA, Bourada F, Tounsi A, Benrahou KH, Hussain M, Tounsi A. Effect of the variable visco-pasternak foundations on the bending and dynamic behaviors of FG plates using integral HSDT model. Arch Appl Mech. 2022;83(2):177-191.
  • 30. Tahir SI, Tounsi A, Chikh A, Al-Osta MA, Al-Dulaijan SU, Al-Zahrani MM. The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT. Steel Compos Struct. 2022;42(4):501.
  • 31. Bouafia K, Selim MM, Bourada F, Bousahla AA, Bourada M, Tounsi A, Adda Bedia E, Tounsi A. Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model. Steel Compos Struct. 2021;41(4):487-503.
  • 32. Kouider D, Kaci A, Selim MM, Bousahla AA, Bourada F, Tounsi A, Tounsi A, Hussain M. An original four-variable quasi-3d shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core. Steel Compos Struct. 2021;41(2):167-191.
  • 33. Zaitoun MW, Chikh A, Tounsi A, Al-Osta MA, Sharif A, Al-Dulaijan SU, Al-Zahrani MM. Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic-metal plate in a hygro-thermal environment. Thin-Walled Struct. 2022;170: 108549.
  • 34. Van Vinh P, Tounsi A. The role of spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates. Eng Comput. 2021. https://doi.org/10.1007/s00366- 021- 01475-8.
  • 35. Van Vinh P, Tounsi A. Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters. Thin-Walled Struct. 2022;174: 109084.
  • 36. Khdeir A, Reddy J. Free vibrations of laminated composite plates using second-order shear deformation theory. Comput Struct. 1999;71(6):617-26.
  • 37. A. Rouabhia, A. Chikh, A. Bousahla, Bourada F, Heireche H, Tounsi A, Kouider Halim B, Tounsi A, Al-Zahrani M, C. Structures, Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory. In: ICREATA’ 21, vol. 37. 2020. p. 180.
  • 38. Panyatong M, Chinnaboon B, Chucheepsakul S. Free vibration analysis of FG nanoplates embedded in elastic medium based on second-order shear deformation plate theory and nonlocal elasticity. Compos Struct. 2016;153:428-41.
  • 39. Reddy JN. Mechanics of laminated composite plates and shells: theory and analysis. CRC Press; 2003.
  • 40. Batra R, Geng T. Comparison of active constrained layer damping by using extension and shear mode piezoceramic actuators. J Intell Mater Syst Struct. 2002;13(6):349-367.
  • 41. Shojaei A, Galvanetto U, Rabczuk T, Jenabi A, Zaccariotto M. A generalized finite difference method based on the peridynamic differential operator for the solution of problems in bounded and unbounded domains. Comput Methods Appl Mech Eng. 2019;343:100-126.
  • 42. Kumar Y, Gupta A, Tounsi A. Size-dependent vibration response of porous graded nanostructure with fem and nonlocal continuum model. Adv Nano Res. 2021;11(1):1-17.
  • 43. Ashour M, Valizadeh N, Rabczuk T. Isogeometric analysis for a phase-field constrained optimization problem of morphological evolution of vesicles in electrical fields. Comput Methods Appl Mech Eng. 2021;377: 113669.
  • 44. Nguyen-Thanh N, Nguyen-Xuan H, Bordas SPA, Rabczuk T. Isogeometric analysis using polynomial splines over hierarchical t-meshes for two-dimensional elastic solids. Comput Methods Appl Mech Eng. 2011;200(21–22):1892-908.
  • 45. Cuong-Le T, Nguyen KD, Le-Minh H, Phan-Vu P, Nguyen-Trong P, Tounsi A. Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory. Adv Nano Res. 2022;12(5):441-455.
  • 46. Başhan A. An efficient approximation to numerical solutions for the kawahara equation via modified cubic b-splines differential quadrature method. Mediterr J Math. 2019;16(1):14.
  • 47. Javani M, Kiani Y, Eslami M. Free vibration analysis of FGGPLRC L-shaped plates implementing GDQE approach. Thin-Walled Struct. 2021;162: 107600.
  • 48. Karami B, Janghorban M. On the dynamics of porous nanotubes with variable material properties and variable thickness. Int J Eng Sci. 2019;136:53-66.
  • 49. Tang Y, Li C-L, Yang T. Application of the generalized differential quadrature method to study vibration and dynamic stability of tri-directional functionally graded beam under magneto-electroelastic fields. Eng Anal Boundary Elem. 2023;146:808-23.
  • 50. Chakraborty A, Anitescu C, Zhuang X, Rabczuk T. Domain adaptation based transfer learning approach for solving PDEs on complex geometries. Eng Comput. 2022;38(5):4569-88.
  • 51. Mortazavi B, Shahrokhi M, Shojaei F, Rabczuk T, Zhuang X, Shapeev AV. A first-principles and machine-learning investigation on the electronic, photocatalytic, mechanical and heat art. 11 (229) conduction properties of nanoporous c 5 n monolayers. Nanoscale. 2022;14(11):4324-33.
  • 52. Huang X, Zhang Y, Moradi Z, Shafiei N. Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube. Eng Comput. 2021.
  • 53. Gilhooley D, Batra R, Xiao J, McCarthy M, Gillespie J Jr. Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions. Compos Struct. 2007;80(4):539-552.
  • 54. Lee Y, Zhao X, Liew KM. Thermoelastic analysis of functionally graded plates using the element-free kp-Ritz method. Smart Mater Struct. 2009;18(3): 035007.
  • 55. Nguyen-Xuan H, Tran LV, Thai CH, Nguyen-Thoi T. Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing. Thin-Walled Struct. 2012;54:1-18.
  • 56. Valizadeh N, Natarajan S, Gonzalez-Estrada OA, Rabczuk T, Bui TQ, Bordas SP. NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos Struct. 2013;99:309-326.
  • 57. Sobhy M. A comprehensive study on FGM nanoplates embedded in an elastic medium. Compos Struct. 2015;134:966-980.
  • 58. Nami MR, Janghorban M. Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant. Compos Struct. 2014;111:349-353.
  • 59. Belarbi M-O, Li L, Ahmed Houari MS, Garg A, Chalak HD, Dimitri R, Tornabene F. Nonlocal vibration of functionally graded nanoplates using a layer wise theory. Math Mech Solids. 2022.
  • 60. Karami B, Janghorban M, Fahham H. Forced vibration analysis of anisotropic curved panels via a quasi-3D model in orthogonal curvilinear coordinate. Thin-Walled Struct. 2022;175: 109254.
  • 61. Li L, Hu Y. Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int J Eng Sci. 2015;97:84-94.
  • 62. Xu X, Shahsavari D, Karami B. On the forced mechanics of doubly-curved nanoshell. Int J Eng Sci. 2021;168: 103538.
  • 63. Zhang Y, Ren H, Rabczuk T. Nonlocal operator method for solving partial differential equations: state-of-the-art review and future perspectives. J Adv Eng Comput. 2022;6(1):1-35.
Identyfikator YADDA
bwmeta1.element.baztech-6f6de328-e969-4ffa-aa89-176ed45d5dab