PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Focusing of linearly polarized helico-conical Lorentz beam with sine-azimuthal variation wavefront

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article a theoretical research is described into focusing of a linearly polarized helico-conical Lorentz beam with a sine-azimuthal variation wavefront. The simulation results show the vortex charge on the axis, which has an obvious modulation effect on the focal modes of the Lorenz beam under certain beam parameters and phase parameters. Both the phase parameter and the vortex charge are zero, the focal spot appears round. The focal spot is symmetric about y axis when the charge is 0 and the phase parameter is adjusted. And the focal evolution patterns vary remarkably under different beam parameters and the phase parameters. In the process of focus evolution, there appears some novel focal patterns, such as a circle, a “T”, a butterfly, a small running humanoid, a whale tail, a flower of four leaves, a serpentine, a goldfish, a Chinese knot and an octopus, which indicates that the focus mode of the optical vortex Lorentz beam can be altered by changing the phase parameters and vortex charge.
Słowa kluczowe
Czasopismo
Rocznik
Strony
373--387
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
autor
  • University of Shanghai for Science and Technology, Shanghai 200093, China
Bibliografia
  • [1] EL GAWHARY O., SEVERINI S., Lorentz beams and symmetry properties in paraxial optics, Journal of Optics A: Pure and Applied Optics 8(5), 2006, pp. 409–414.
  • [2] EL GAWHARY O., SEVERINI S., Lorentz beams as a basis for a new class of rentangularly symmetric optical fields, Optics Communications 269(2), 2007, pp. 274–284.
  • [3] TORRE A., EVANS W.A.B., EL GAWHARY O., SEVERINI S., Relativistic Hermite polynomials and Lorentz beams, Journal of Optics A: Pure and Applied Optics 10(11), 2008, article ID 115007.
  • [4] NAQWI A., DURST F., Focusing of diode laser beams: a simple mathematical model, Applied Optics 29(12), 1990, pp. 1780–1785.
  • [5] DUMKE W.P., The angular beam divergence in double-heterojunction lasers with very thin active regions, IEEE Journal of Quantum Electronics 11(7), 1975, pp. 400–402.
  • [6] LU QUNYING, CHEN TINGTING, DING GUILIN, YUAN XIAO, Propagation properties of Lorentz beam passing through first-order axisymmertric optical systems, Chinese Journal of Lasers 35(4), 2008, pp. 539–543.
  • [7] GUOQUAN ZHOU, JUN ZHENG, YIQIN XU, Investigation in the far field characteristics of Lorentz beam from the vectorial structure, Journal of Modern Optics 55(6), 2008, pp. 993–1002.
  • [8] ZHOU GUO-QUAN, Study on the propagation properties of Lorentz beam, Acta Physica Sinica 57(6), 2008, pp. 3494–3498.
  • [9] JUGUAN GU, DAOMU ZHAO, Propagation characteristics of Gaussian beams through a paraxial ABCD optical system with an annular aperture, Journal of Modern Optics 52(8), 2005, pp. 1065–1072.
  • [10] GOODMAN J.W., Introduction to Fourier Optics, McGraw-Hill, New York, 1968.
  • [11] XIUMIN GAO, DAWEI ZHANG, MEI TING, FU RUI, QIUFANG ZHAN, SONGLIN ZHUANG, Focus shaping of linearly polarized Lorentz beam with sine-azimuthal variation wavefront, Optik – International Journal for Light and Electron Optics 124(15), 2013, pp. 2079–2084.
  • [12] MAIR A., VAZIRI A., WEIHS G., ZEILINGER A., Entanglement of the orbital angular-momentum states of photons, Nature 412(6844), 2001, pp. 313–316.
  • [13] KRENN M., HANDSTEINER J., FINK M., FICKLER R., ZEILINGER A., Twisted photon entanglement through turbulent air across Vienna, PNAS 112(46), 2015, pp. 14197–14201.
  • [14] PATERSON C., Atmospheric turbulence and orbital angular momentum of single photons for optical communication, Physical Review Letters 94(15), 2005, article ID 153901.
  • [15] WILLNER A.E., HUANG H., YAN Y., REN Y., AHMED N., XIE G., BAO C., LI L., CAO Y., ZHAO Z., WANG J., LAVERY M.P.J., TUR M., RAMACHANDRAN S., MOLISCH A.F., ASHRAFI N., ASHRAFI S., Optical communications using orbital angular momentum beams, Advances in Optics and Photonics 7(1), 2015, pp. 66–106.
  • [16] LEE W.M., YUAN X.-C., CHEONG W.C., Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation, Optics Letters 29(15), 2004, pp. 1796–1798.
  • [17] LIANG Y., YAO B., MA B., et al., Holographic optical trapping and manipulation based on phaseonly liquid-crystal spatial light modulator, Acta Physica Sinica 36(3), 2016, article ID 0309001.
  • [18] GUTTINGER W., EIKEMEIER H., [Eds.], Structure Stability in Physics, Springer, Berlin, 1978, pp. 141–254.
  • [19] VASNETSOV M.V., STALIUNAS K., [Eds.], Optical Vortices, Nova Science Publishers, New York, 1999.
  • [20] KIVSHAR Y.S., PELINOVSKY D.E., Self-focusing and transverse instabilities of solitary waves, Physics Reports 331(4), 2000, pp. 117–195.
  • [21] ALLEN L., PADGETT M.J., BABIKER M., IV The Orbital Angular Momentum of Light, [In] Progress in Optics, Vol. 39, Elsevier, 1999, pp. 291–372.
  • [22] BARNETT S.M., ALLEN L., Orbital angular momentum and nonparaxial light beams, Optics Communications 110(5–6), 1994, pp. 670–678.
  • [23] GUOQUAN ZHOU, The beam propagation factors and the kurtosis parameters of a Lorentz beam, Optics and Laser Technology 41(8), 2009, pp. 953–955.
  • [24] ZHOU GUO-QUAN, Fractional Fourier transform of Lorentz beams, Chinese Physics B 18(7), 2009, pp. 2779–2784.
  • [25] GUOQUAN ZHOU, Generalized M2 factors of truncated partially coherent Lorentz and Lorentz–Gauss beams, Journal of Optics 12(1), 2010, article ID 015701.
  • [26] YU MIAO, GUANXUE WANG, XIANGYU ZENG, GUORONG SUI, RONGFU ZHANG, QIUFANG ZHAN, Focusing properties of radially polarized helico-conical Lorentz–Gauss beam, Optik – International Journal for Light and Electron Optics 136, 2017, pp. 289–294.
  • [27] FU RUI, DAWEI ZHANG, MEI TING, XIUMIN GAO, SONGLIN ZHUANG, Focusing of linearly polarized Lorentz–Gauss beam with one optical vortex, Optik – International Journal for Light and Electron Optics 124(17), 2013, pp. 2969–2973.
  • [28] XUN WANG, ZHIRONG LIU, DAOMU ZHAO, Nonparaxial propagation of Lorentz–Gauss beams in uniaxial crystal orthogonal to the optical axis, Journal of the Optical Society of America A 31(4), 2014, pp. 872–878.
  • [29] NEMOTO S., Experimental evaluation of a new expression for the far field of a diode laser beam, Applied Optics 33(27), 1994, pp. 6387–6392.
  • [30] HAIDONG WANG, XIUMIN GAO, XINMIAO LU, BOLUN LI, GAORAN QIAN, Focusing properties of Lorentz–Gaussian beam with trigonometric function modulation, Optik – International Journal for Light and Electron Optics 127(20), 2016, pp. 9436–9443.
  • [31] GU M., Advanced Optical Imaging Theory, Springer, Heidelberg, 2000.
  • [32] DJENAN GANIC, XIAOSONG GAN, MIN GU, Focusing of doughnut laser beams by a high numerical-aperture objective in free space, Optics Express 11(21), 2003, pp. 2747–2752.
  • [33] ZINCHIK A.A., Application of spatial light modulators for generation of laser beams with a spiral phase distribution, Scientific and Technical Journal of Information Technologies, Mechanics and Optics 15(5), 2015, pp. 817–824.
  • [34] ZHAOMIN TONG, XUYUAN CHEN, Speckle reduction by angle diversity using a translucent spatial light modulator, Optica Applicata 42(3), 2012, pp. 651–658.
  • [35] KOLOBRODOV V.G., TYMCHYK G.S., MYKYTENKO V.I., KOLOBRODOV M.S., Physical and mathematical model of the digital coherent optical spectrum analyzer, Optica Applicata 47(2), 2017, pp. 273–282.
  • [36] BERG-SØRENSEN K., FLYVBJERG H., Power spectrum analysis for optical tweezers, Review of Scientific Instruments 75(3), 2004, pp. 594–612.
  • [37] DROBCZYŃSKI S., DUŚ-SZACHNIEWICZ K., SYMONOWICZ K., GŁOGOCKA D., Spectral analysis by a video camera in a holographic optical tweezers setup, Optica Applicata 43(4), 2013, pp. 739–746.
  • [38] HAEBERLÉ O., XU C., DIETERLEN A., JACQUEY S., Multiple-objective microscopy with three-dimensional resolution near 100 nm and a long working distance, Optics Letters 26(21), 2001, pp. 1684–1686.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f69c81c-8bf7-4bc5-9d10-38fd2fce5b8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.