PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Power electronic transformer based on cascaded H-bridge converter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the control strategy of power electronic transformer (PET) is proposed. The analyzed structure of PET uses two seven-level cascaded H-bridge (CHB) rectifiers. The electrical power of PET is transferred between DC-links of CHB converters using dual-active-bridges (DABs) and low voltage high frequency transformers. The roposed solution allows for controlling the active and reactive power with a low level of harmonic distortions. The DC-link voltages and the load of the utilized H-bridges are controlled using appropriate modulation strategy. The theoretical issues are confirmed by simulation and experimental results.
Rocznik
Strony
675--683
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
  • Gdansk University of Technology, 11/12 Narutowicza St., 80-169 Gdańsk
autor
  • Gdansk University of Technology, 11/12 Narutowicza St., 80-169 Gdańsk
Bibliografia
  • [1] F. Gao, L. Zhang, Q. Zhou, M. Chen, T. Xu, and S. Hu, “Stateof-charge balancing control strategy of battery energy storage system based on modular multilevel converter”, Proc. IEEE ECCE, 2567–2574 (2014).
  • [2] M.R. Islam, Y. Guo, M. Jafari, Z. Malekjamshidi, and J. Zhu, “A 43-level 33 kV 3-phase modular multilevel cascaded converter for direct grid integration of renewable generation systems”, Proc. Inn. Smart Grid Techn. IEEE ISGT Asia, 594–599 (2014).
  • [3] H. Abu-Rub, A. Lewicki, A. Iqbal, and J. Guzinski, “Medium voltage drives – challenges and requirements”, IEEE International Symposium on Industrial Electronics, 1372‒1377 (2010).
  • [4] D. Vinnikov, J. Laugis, R. Strzelecki, and M. Egorov, “6.5 kV IGBT switch realization possibilities and their feasibility study for high-power applications”, 6th International Conference on Electrical Engineering, Cairo (2008).
  • [5] D. Vinnikow, “High-voltage switch realization possibilities for the 3.0 kV dc fed voltage converters”, 5th Int. Conf. Elect. Electron. Eng., Bursa (2007).
  • [6] J. Rodríguez, J.Sh. Lai, and F. Zheng Peng, “Multilevel inverters: A survey of topologies, controls, and applications”, IEEE Trans. on Ind. Electronics 49 (4), (2002).
  • [7] M. Malinowski, K. Gopakumar, J. Rodriguez, and M.A. Pérez, “A survey on cascaded multilevel inverters”, IEEE Trans. Ind. Electron. 57 (7), 2197–2206, (2010).
  • [8] M.R. Islam, Y. Guo, and J. Zhu, “A high-frequency link multilevel cascaded medium-voltage converter for direct grid integration of renewable energy systems”, IEEE Trans. Power Electron. 29 (8), 4167–4182 (2014).
  • [9] C. Townsend, Y. Yu, G. Konstantinou, and V. Agelidis, “Cascaded H-bridge multi-level PV topology for alleviation of perphase power imbalances and reduction of second harmonic voltage ripple”, IEEE Trans. Power Electron., 1–1 (2015).
  • [10] C. Liu et al., “Reliable transformerless battery energy storage systems based on cascade dual-boost/buck converters”, IET Power Electron. 8 (9), 1681–1689 (2015).
  • [11] G. Farivar, B. Hredzak, and V.G. Agelidis, “Reduced-capacitance thin-film H-bridge multilevel STATCOM control utilizing an analytic filtering scheme”, IEEE Trans. Ind. Electron. 62 (10), 6457–6468 (2015).
  • [12] J. Rodriguez, S. Bernet, B. Wu, J.O. Pontt, and S. Kouro, “Multilevel voltage-source-converter topologies for industrial mediumvoltage drives”, IEEE Trans. Ind. Electron. 54 (6), 2930–2945 (2007).
  • [13] A. Goodman, A. Watson, A. Dey, J. Clare, P. Wheeler, and Y. Zushi, “DC side ripple cancellation in a cascaded multi-level topology for automotive applications”, Proc. IEEE ECCE, 5916–5922 (2014).
  • [14] A. Marzoughi and H. Imaneini, “Optimal selective harmonic elimination for cascaded H-bridge-based multilevel rectifiers”, IET Power Electron. 7 (2), 350–356 (2014).
  • [15] Y. Sun, J. Zhao, and Z. Ji, “An improved CPS-PWM method for cascaded multilevel STATCOM under unequal losses”, Proc. 39th Annu. Conf. IEEE IECON, 418–423 (2013).
  • [16] J. Chavarria, D. Biel, F. Guinjoan, C. Meza, and J.J. Negroni, “Energy-balance control of PV cascaded multilevel grid-connected inverters under level-shifted and phase-shifted PWMs”, IEEE Trans. Ind. Electron. 60 (1), 98–111 (2013).
  • [17] Z. Zhang, H. Zhao, S. Fu, J. Shi, and X. He, “Voltage and power balance control strategy for three-phase modular cascaded solid stated transformer”, 1475–1480 (2016).
  • [18] W. Choi, K.-M. Rho, and B.-H. Cho, “Fundamental duty modulation of dual-active-bridge converter for wide-range operation”, IEEE Trans. Power Electron. 31 (6), 4048–4064 (2016).
  • [19] D. Xu, N.R. Zargari, B. Wu, J. Wiseman, B. Yuwen, and S. Rizzo, “A medium voltage AC drive with parallel current source inverters for high power applications”, IEEE 36th Power Electronics Specialists Conference (2005).
  • [20] B. Wu and M. Narimani, “PWM current source inverters”, published online: 24 DEC 2016, DOI:10.1002/9781119156079.ch10
  • [21] A. Lewicki, Z. Krzeminski, and H. Abu-Rub, “Space-vector pulsewidth modulation for three-level NPC converter with the neutral point voltage control”, IEEE Transactions on Industrial Electronics 58 (11), 5076‒5086 (2011).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f661f4f-fb58-49de-835c-173124313562
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.