Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Projektowanie pod kątem montażu: propozycje koncepcji ortez nadgarstka
Języki publikacji
Abstrakty
This study investigates the integration of modern engineering techniques, including 3D scanning and additive manufacturing, in the design and production of wrist orthoses. The research aims to enhance orthotic devices by proposing three innovative fastening methods - Velcro straps, screws, and magnets - designed for use with 3D-printed orthoses. The study outlines the entire process from patient hand scanning to the final orthosis creation, emphasizing the precision and customization afforded by these advanced technologies. The proposed designs are intended to improve the comfort, effectiveness, and usability of orthoses for patients with musculoskeletal dysfunctions. The findings demonstrate the potential for significant advancements in personalized medical devices, offering new avenues for rehabilitation and patient care.
Niniejsze badanie analizuje integrację nowoczesnych technik inżynieryjnych, w tym skanowania 3D i wytwarzania przyrostowego, w projektowaniu i produkcji ortez nadgarstka. Celem badań jest udoskonalenie urządzeń ortotycznych poprzez zaproponowanie trzech innowacyjnych metod mocowania - pasków na rzep, śrub oraz magnesów - przeznaczonych do użytku z ortezami wydrukowanymi w technologii 3D. Badanie przedstawia cały proces, od skanowania dłoni pacjenta po końcowe stworzenie ortezy, z naciskiem na precyzję i możliwość personalizacji, jakie zapewniają te zaawansowane technologie. Proponowane projekty mają na celu poprawę komfortu, skuteczności i użyteczności ortez dla pacjentów z dysfunkcjami układu mięśniowo-szkieletowego. Wyniki wskazują na potencjał znacznych postępów w dziedzinie spersonalizowanych urządzeń medycznych, oferując nowe możliwości w zakresie rehabilitacji i opieki nad pacjentem.
Wydawca
Czasopismo
Rocznik
Tom
Strony
29--37
Opis fizyczny
Bibliogr. 32 poz., il. kolor., fot.
Twórcy
autor
- Department of Physics and Medical Engineering, Faculty of Mathematics and Applied Physics, Rzeszow University of Technology, al. Powstańców Warszawy 6, Rzeszow, Poland
autor
- Department of Culture and Media, Faculty of Humanities, SWPS University, Chodakowska 19/31, Warsaw, Poland
autor
- Department of Physics and Medical Engineering, Faculty of Mathematics and Applied Physics, Rzeszow University of Technology, al. Powstańców Warszawy 6, Rzeszow, Poland
autor
- Department of Physics and Medical Engineering, Faculty of Mathematics and Applied Physics, Rzeszow University of Technology, al. Powstańców Warszawy 6, Rzeszow, Poland
Bibliografia
- Aranceta-Garza, A., & Ross, K. (2021). A comparative study of efficacy and functionality of ten commercially available wrist-hand orthoses in healthy females: Wrist range of motion and grip strength analysis. Frontiers in Rehabilitation Sciences, 2. https://doi.org/10.3389/fresc.2021.687554.
- Bader, D. L., & Pearcy, M. J. (1982). Material properties of Velcro fastenings. Prosthetics & Orthotics International, 6(2), 93-96. https://doi.org/10.3109/03093648209166773.
- Boretti, A. (2024). A perspective on 3D printing in the medical field. Annals of 3D Printed Medicine, 13(100138), 100138. https://doi.org/10.1016/j.stlm.2023.100138.
- Cazon, A., Kelly, S., Paterson, A. M., Bibb, R. J., & Campbell, R. I. (2017). Analysis and comparison of wrist splint designs using the finite element method: Multi-material three-dimensional printing compared to typical existing practice with thermoplastics. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 231(9), 881-897. https://doi.org/10.1177/0954411917718221.
- Costa, R. (2024). Terminology and classification of orthoses for upper limbs. Journal of Hand Therapy: Official Journal of the American Society of Hand Therapists, 37(3), 489-491. https://doi.org/10.1016/j.jht2023.08.011.
- Chen, R. K., Jin, Y., Wensman, J., & Shih, A. (2016). Additive manufacturing of custom orthoses and prostheses-A review. Additive Manufacturing, 12, 77-89). https://doi. org/10.1016/j.addma.2016.04.002.
- Coppard, B. M., & Lohman, H. (2020). Introduction to orthotics: A clinical reasoning & problem-solving approach. Elsevier/Mosby.
- Donato, Z., Gonzalez, D., Markowitz, M., & Gjolaj, J. (2024). Postoperative spinal orthoses: Types and outcomes. The Journal of the American Academy of Orthopaedic Surgeons, 32(5), 211-219. https://doi.org/10.5435/JAAOS-D-23-00498.
- Ferrari, A. L. M., Medola, F. O., & Sandnes, F. E. (2021). How do orthoses impact ease of donning, handwriting, typewriting, and transmission of manual torque? A study of three prefabricated wrist-hand orthoses. Journal of Prosthetics and Orthotics: JPO, 33(3), 168-174. https://doi.org/10.1097/jpo.0000000000000344.
- Gilanliogullari, N., & Soyer, K. (2024). Effects of dynamie wrist-hand splints for patients with rheumatoid arthritis: A systematic review. Prosthetics and Orthotics International. doi:10.1097/PXR.0000000000000355.
- Górski, F., Wichniarek, R., Kuczko, W., Żukowska, M., Lulkiewicz, M., & Zawadzki, P. (2020). Experimental studies on 3D printing of automatically designed customized wrist-hand orthoses. Materials, 13(18), 4091. https://doi.org/10.3390/ma13184091
- Hailey, D. M. (1995). Orthoses and prostheses. International Journal of Technology Assessment in Health Care, 11(2), 214-234. https://doi.org/10.1017/s026646230000684x
- Haje, S. A., & de PodestaHaje, D. (2009). Orthopedic approach to pectus deformities: 32 years of studies. Revista Brasileira de Ortopedia (English Edition), 44(3), 191-198. https://doi.org/10.1016/s2255-4971(15)30067-7
- Haque, A., Parsons, H., Parsons, N., Costa, M., Redmond, A., Mason, J., ... & Keamey, R. (2023). Use of cast immobilization versus removable brace in adults with an ankle fracture: two-year follow-up of a multicentre randomized controlled trial. The Bone & Joint Journal, vol. 105-B no. 4, str. 382-388. https://doi.org/10.1302/0301-620x.105b4 .bjj-2022-0602.r3.
- Jaworska, N., & Podsiadło, H. (2019). Technologia druku 3D jako szansa dla środowiska naturalnego. Acta Poligraphica, vol. 14.
- Jimenez, M., Romero, L., Dommguez, I. A., Espinosa, M. del M., & Dommguez, M. (2019). Additive manufacturing technologies: An overview about 3D printing methods and future prospects. Complexity, 2019(1), 1-30. https://doi.org/10.1155/2019/9656938.
- Kapustka, K., Ziegmann, G., Klimecka-Tatar, D., & Nakonczy, S. (2020). Process management and technological challenges in the aspect of Pernament magnets recycling - the second life of neodymium magnets. Manufacturing Technology, 20(5), 617-624. https://doi.org/10.21062/mft.2020.098.
- Kumar, R., & Sarangi, S. K. (2021). 3D-Printed Orthosis: A Review on Design Process and Material Selection for Fused Deposition Modeling Process. Advances in Materials Processing and Manufacturing Applications: Proceedings of iCADMA 2020, 531-538.
- Li, J., & Tanaka, H. (2018). Rapid customization system for 3D-printed splint using programmable modeling technique - a practical approach. 3D Printing in Medicine, 4(1). https://doi.org/10.1186/s41205-018-0027-6.
- Mohaddis, M. (2023). Enhancing functional rehabilitation through orthotic interventions for foot and ankle conditions: a narrative review. Cureus. https://doi.org/10.7759/ cureus.49103.
- Nouri, A., Wang, L., Li, Y., & Wen, C. (2023). Materials and manufacturing for ankle-foot orthoses: A review. Advanced Engineering Materials, 25(20). https://doi.org/10.1002/adem.202300238.
- Oud, T. A., Lazzari, E., Gijsbers, H. J., Gobbo, M., Nollet, F., & Brehm, M. A. (2021). Effectiveness of 3D-printed orthoses for traumatic and chronic hand conditions: A scoping review. PLOS ONE, 16(11). https://doi.org/10.1371/journal.pone.0260271.
- Paterson, A. M. J. (2013) Digitisation of the splinting process: exploration and evaluation of a Computer Aided Design approach to support Additive Manufacture, [PhD thesis, Loughborough University, Loughborough]. University Repository: https://repository.lboro.ac.uk/articles/thesis/Digitisation_of_the_splinting_process_exploration_and_evaluation_of_a_computer_aided_design_approach_to_support_additive_manufacture/9350207?file=26674988.
- Pathak, K., Saikia, R., Das, A., Das, D., Islam, M. A., Pramanik, P., Parasar, A., Borthakur, P. P., Sarmah, P., Saikia, M., & Borthakur, B. (2023). 3D printing in Biomedicine: Advancing Personalized Care through additive manufacturing. Exploration of Medicine, 1135-1167. https://doi.org/10.37349/emed.2023.00200.
- Poier, P. H., Arce, R. P., Rosenmann, G. C., Carvalho, M. G., Ulbricht, L., & Foggiatto, J. A. (2021). Development of modular wrist, hand and finger orthesis by additive manufacturing. Research, Society and Development, 10(15). https://doi.org/10.33448/rsd-v10i15.22707.
- Poier, P. H., Weigert, M. C., Rosenmann, G. C., de Carvalho, M. G., Ulbricht, L., & Foggiatto, J. A. (2021). The development of low-cost wrist, hand, and finger orthosis for children with cerebral palsy using additive manufacturing. Research on Biomedical Engineering, 37(3), 445-453. https://doi.org/10.1007/s42600-021-00157-0.
- Silva, R., Silva, B., Femandes, C., Morouęo, P., Alves, N., & Veloso, A. (2024). A Review on 3D Scanners Studies for Producing Customized Orthoses. Sensors, 24(5), 1373.
- Smith, T. O., Drew, B. T., Meek, T. H., & Clark, A. B. (2015). Knee orthoses for treating patellofemoral pain syndrome. Cochrane Database of Systematic Reviews, 2015(12). https://doi.org/10.1002/14651858.cd010513.pub2.
- Steck, P., Scherb, D., Witzgall, C., Miehling, J., & Wartzack, S. (2023). Design and additive manufacturing of a passive ankle-foot orthosis incorporating material characterization for fiber-reinforced PETG-CF15. Materials, 16(9), 3503. https://doi.org/10.3390/ma16093503.
- Tserovski, S., Georgieva, S., Simeonov, R., Bigdeli, A., Rottinger, H., & Kinov, P. (2019). Advantages and disadvantages of 3D printing for pre-operative planning of Revision Hip Surgery. Journal of Surgical Case Reports, 2019(7). https://doi.org/10.1093/j.scr/rjz214.
- Yang, Y.-S., Tseng, C.-H., Fang, W.-C., Han, I.-W., & Huang, S.-C. (2021). Effectiveness of a new 3D-printed dynamic hand-wrist splint on hand motor function and spasticity in chronic stroke patients. Journal of Clinical Medicine, 10(19), 4549. doi:10.3390/jcm10194549.
- Zhou, M., Sun, C., Naghavi, S. A., Wang, L., Tamaddon, M., Wang, J., & Liu, C. (2024). The design and manufacturing of a Patient-Specific wrist splint for rehabilitation of rheumatoid arthritis. Materials & Design, 238(112704), 112704. doi:10.1016/j.matdes.2024.112704.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f6074c0-11e9-46d4-9fba-8a4cbc936f43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.