PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mobile Laser Scanning accuracy assessment for the purpose of base-map updating

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to analyze the possibility of using mobile laser scanning systems to acquire information for production and/or updating of a basic map and to propose a no-reference index of this accuracy assessment. Point clouds have been analyzed in terms of content of interpretation and geometric potential. For this purpose, the accuracy of point clouds with a georeference assigned to the base map objects was examined. In order to conduct reference measurements, a geodetic network was designed and also additional static laser scanning data has been used. The analysis of mobile laser scanning (MLS) data accuracy was conducted with the use of 395 check points. In the paper, application of the total Error of Position of the base-map Objects acquired with the use of MLS was proposed. Research results were related to reference total station measurements. The resulting error values indicate the possibility to use an MLS point cloud in order to accurately determine coordinates for individual objects for the purposes of standard surveying studies, e.g. for updating some elements of the base map content. Nevertheless, acquiring MLS point clouds with satisfying accuracy not always is possible, unless specific resolution condition is fulfilled. The paper presents results of accuracy evaluation in different classes of base-map elements and objects.
Rocznik
Strony
35--55
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Military University of Technology Faculty of Civil Engineering and Geodesy, Institute of Geodesy Department of Remote Sensing, Photogrammetry and Imagery Intelligence 2 gen. W. Urbanowicza St. 00-908 Warsaw 46, Poland
  • Military University of Technology Faculty of Civil Engineering and Geodesy, Institute of Geodesy Department of Remote Sensing, Photogrammetry and Imagery Intelligence 2 gen. W. Urbanowicza St. 00-908 Warsaw 46, Poland
Bibliografia
  • [1] Bakula, K., Dominik, W. and Ostrowski, W. (2015). Enhancement of Lidar Planimetric Accuracy using Orthoimages. Photogrammetrie Fernerkundung Geoinformation, (2), 143–155. DOI: 10.1127/pfg/2015/0260.
  • [2] Bobkowska, K., Przyborski M., Szulwic, J. and Janowski, A. (2016). Analysis of High Resolution Clouds of Points as a Source of Biometric Data. In 2016 BALTIC GEODETIC CONGRESS (BGC GEOMATICS), 2–4 June 2016 (pp. 15–21), Gdansk, Poland. DOI: 10.1109/BGC.Geomatics.2016.12.
  • [3] Fryskowska, A. (2017). Accuracy Assessment of Point Clouds Geo-Referencing in Surveying and Documentation of Historical Complexes. In 2017 GEOMATICS & RESTORATION – Conservation of Cultural Heritage in the Digital Era, 22–24 May 2017. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5(W1), (pp. 161–165), Florence, Italy. DOI: 10.5194/isprs-archives-XLII-5-W1-161-2017.
  • [4] Fryskowska, A.,Walczykowski, P., Delis P. andWojtkowska, M. (2015). ALS and TLS data fusion in cultural heritage documentation and modeling. In 25th International CIPA Symposium 2015, 31 August – 04 September 2015. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, XL-5(W7), (pp. 147–150). Taipei, Taiwan. DOI: 10.5194/isprsarchives-XL-5-W7-147-2015.
  • [5] Gandolfi, S., Barbarella, M., Ronci, E. and Burchi, A. (2008). Close photogrammetry and laser scanning using a mobile mapping system for the high detailed survey of a high density urban area. In 3D Virtual Reconstruction and Visualization of Complex Architectures, 25–27 February 2015. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(B5), (pp. 909–914). Avila, Spain.
  • [6] García-San-Miguel, D. and Lerma, J.L. (2013). Geometric calibration of a terrestrial laser scanner with local additional parameters: An automatic strategy. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 122–136. DOI: 10.1016/j.isprsjprs.2013.02.007.
  • [7] Glowienka, E., Michalowska, K., Opalinski P., Hejmanowska, B., Mikrut, S. and Kramarczyk, P. (2017). Use of LIDAR Data in the 3D/4D Analyses of the Krakow Fortress Objects. In IOP Conference Series-Materials Science and Engineering, (245), article Number: UNSP 042080. DOI: 10.1088/1757-899X/245/4/04.
  • [8] Hebert, M. and Krotkov, E. (1992). 3D measurements from imaging laser radars: how good are they? Image and Visual Computation, 10 (3), 170–178. DOI: 10.1016/0262-8856(92)90068-E.
  • [9] Iavarone, A. (2002). Laser Scanning Fundamentals. Profesional Surveying Magazine, 22(9), retrieved 3 January, 2018, from http://www.profsurv.com/magazine/article.aspx?i=949.
  • [10] Jenerowicz, A. and Siok, K. (2017). Fusion of radar and optical data for mapping and monitoring of water bodies. In SPIE Remote Sensing Proceedings, 2 November 2017 (10421/XIX pp. 261–269), Warsaw, Poland. DOI: 10.1117/12.2278365.
  • [11] Kaartinen H., Hyyppä J., Kukko A., Lehtomäki M., Jaakkola A., Vosselman G., Elberink S.O., Rutzinger, M., Pu, Shi and Vaaja, M. (2013). Mobile Mapping – Road Environment Mapping using Mobile Laser Scanning, European Spatial Data Research. EuroSDR – European Spatial Data Research, 62, 49–95.
  • [12] Kaartinen, H., Hyyppä, J., Kukko A., Jaakkola A. and Hyyppä, H. (2012). Benchmarking the Performance of Mobile Laser Scanning Systems Using a Permanent Test Field. Sensors, 12 (9), 12814–12835, DOI: 10.3390/s120912814.
  • [13] Kedzierski, M., Fryskowska, A., Wierzbicki, D., Dabrowska, M. and Grochala, A. (2015). Impact Of The Method Of Registering Terrestrial Laser Scanning Data On The Quality Of Documenting Cultural Heritage Structures. In 25th International CIPA Symposium 2015, 31 August–04 September 2015. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, XL-5(W7), (pp. 245–248), DOI: 10.5194/isprsarchives-XL-5-W7-147-2015.
  • [14] Lee, D.T., Schachter, B.J. (1980). Two Algorithms for Constructing a Delaunay Triangulation. International Journal of Computer and Information Sciences, 9 (3), 219–242.
  • [15] Lenda, G., Marmol U. and Mirek, G. (2015). Accuracy of Laser Scanners for Measuring Surfaces made of Synthetic Materials. Photogrammetrie Fernerkundung Geoinformation, 5, 357–372, DOI: 10.1127/pfg/2015/0273.
  • [16] Lichti, D., Gordon, S. and Tipdecho, T. (2005). Error Models and Propagation in Directly Georeferenced Terrestrial Laser Scanner Networks. Journal Surveying Engineering 1, 135–142.
  • [17] Lichti, D. and Gordon, S.J. (2004). Terrestrial laser scanners with a narrow field of view: the effect on 3D resection solutions. Survey Review 37(292), 448–468. DOI: 10.1179/sre.2004.37.292.448.
  • [18] Lin, Y., Hyyppä, J., Kaartinen, H. and Kukko, A. (2013). Performance Analysis of Mobile Laser Scanning Systems in Target Representation. Remote Sensing 5, 3140–3155. DOI: 10.3390/rs5073140.
  • [19] Lubczonek, J. (2016). Location Determination of Radar Sensors by Using LIDAR data. In Conference: 17th International Radar Symposium (IRS), 10–12 May 2016 (Accession Number: 16104485). Krakow, Poland. DOI: 10.1109/IRS.2016.7497289.
  • [20] Markiewicz, J. and Zawieska, D. (2015). Quality assessment of the TLS data in conservation of monuments, In SPIE Remote Sensing Proceeedings, 30 June 2015 (pp. 95270V-1-10), Munich, Germany, DOI: 10.1117/12.2184911.
  • [21] Mikrut, S., Kohut, P, Pyka, K., Tokarczyk, R., Barszcz, T. and Uhl, T. (2016). Mobile Laser Scanning Systems for Measuring the Clearance Gauge of Railways: State of Play, Testing and Outlook. Sensors, 16 (5), Article Number: 683, DOI: 10.3390/s16050683.
  • [22] Osada, E., Sosnica, K., Borkowski, A., Owczarek-Wesolowska, M. and Gromczak, A. (2017). A Direct Georeferencing Method for Terrestrial Laser Scanning Using GNSS Data and the Vertical Deflection from Global Earth Gravity Models. Sensors, 17 (7), Article Number: 1489, DOI: 10.3390/s17071489.
  • [23] Poręba, M. and Goulette, F. (2012). Assessing the Accuracy of Land-Based Mobile Laser Scanning Data. Geomatics And Environmental Engineering, 6 (3), 73–81. DOI: 10.7494/geom.2012.6.3.73.
  • [24] Regulation in base map production. (2011). Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 9 listopada 2011 r. w sprawie standardów technicznych wykonywania geodezyjnych pomiarów sytuacyjnych i wysokościowych oraz opracowywania i przekazywania wyników tych pomiarów do państwowego zasobu geodezyjnego i kartograficznego. Poland.
  • [25] Reshetyuk, Y. (2010). Direct Georeferencing with GPS in Terrestrial Laser Scanning, ZFV – Zeitschrift fur Geodasie. Geoinformation und Landmanagement, 135 (3), 151–159.
  • [26] Reshetyuk, Y. (2009). Self-calibration and direct georeferencing in terrestrial laser scanning. Doctoral dissertation, Royal Institute of Technology (KTH), Stockholm, Sweden.
  • [27] dos Santos, D.R., Dal Poz, A.P. and Khoshelham, K. (2013). Indirect Georeferencing of Terrestrial Laser Scanning Data using Control Lines. Photogrametric Record, 28, 276–292. DOI: 10.1111/phor.12027.
  • [28] Scaioni, M. (2005). Direct georeferencing of TLS in surveying of complex sites. In: Proceedings of the ISPRS Working Group V/4 Workshop 3D-ARCH, Virtual Reconstruction and Visualization of Complex Architectures, August 22–24, Mestre-Venice, Italy: http://www.isprs.org/ publications/archives.html.
  • [29] Shan, Jie, Toth, Ch.K. (2009). Topographic Laser Ranging And Scanning – Principles And Processing, Boca Raton 2009, CRC Press Taylor & Francis Group.
  • [30] Sloan, S.W. (1987). A fast algorithm for constructing Delaunay triangulations in the plane, Advances in Engineering Software., 9 (1), 34–55. DOI: doi.org/10.1016/0141-1195(87)90043-X.
  • [31] Toschi, I., Rodríguez-Gonzálvez, P., Remondino, F., Minto, S., Orlandini, S. and Fuller, A. (2015). Accuracy Evaluation of a Mobile Mapping System with Advanced Statistical Methods. In 3D Virtual Reconstruction and Visualization of Complex Architectures. 25-27 February 2015, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W4, (pp. 245–253). Avila, Spain. DOI: 10.5194/isprsarchives-XL-5-W4-245-2015.
  • [32] Wilinska, M., Kedzierski, M., Zaplata, R., Fryskowska, A. and Delis, P. (2012). Noninvasive Methods Of Determining Historical Objects Deformation Using TLS. In Conference: 8th International Conference on Structural Analysis of Historical Constructions, Structural Analysis of Historical Constructions, 1–3, 2582–2588.
  • [33] Woroszkiewicz, M., Ewiak I. and Lulkowska, P. (2017). Accuracy assessment of TanDEM-X IDEM using airborne LiDAR on the area of Poland. Geodesy and Cartography, 66 (1), 137–148, DOI: 10.1515/geocart-2017-0007.
  • [34] Zacharek, M., Delis, P., Kedzierski, M. and Fryskowska, A., (2017). Generating Accurate 3d Models Of Architectural Heritage Structures Using Low-Cost Camera And Open Source Algorithms. In 2017 GEOMATICS & RESTORATION – Conservation of Cultural Heritage in the Digital Era, 22–24 May 2017, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5(W1), (pp. 99–104), Florence, Italy. DOI: 10.5194/isprs-archives-XLII-5-W1-99-2017.
  • [35] http://bandwork.my/product/54/Topcon-GPT-3100N.html#.Wj0V0jfdhPY.
  • [36] http://www.leica-geosystems.pl/pl/Leica-Sprinter-150M-250M_5284.htm.
  • [37] http://www.laser-3d.pl/skanery/skanery-riegl/skanowanie-mobilne-rriegl/riegl-vmx-250.
  • [38] http://hds.leica-geosystems.com/downloads123/hds/hds/ScanStation/brochures-datasheet/Leica_ScanStation%202_datasheet_en.pdf.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f5b3cf9-a000-49d9-b56f-4f308fe6742c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.