PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Temperature and ice regimes of waterbodies under the impacts of global warming and a hydropower plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the results of regular monitoring and remote sensing data the patterns of water temperature and ice regime of the Dnipro River within Kyiv, as affected by global warming and a hydropower plant, were identified. The characteristic features of this stretch of the river are increasing water temperature, and the decreasing thickness and duration of ice cover. The largest water temperature increase is in summer, with a somewhat smaller increase in autumn. The increase of water temperature in spring is much less than the increase in air temperature. In summer, the gradient of water temperature increase is a little bit less than that of air temperature. In autumn, the gradient of water temperature increase is larger than the gradient of air temperature increase. From April to August the lowest water temperature is usually observed near the Kyivska hydropower plant (HPP), which is located upstream. During this period the water temperature downstream from HPP increases. The uneven daily operation of HPP causes the alternation of areas with different temperature along the Dnipro River. In the cold season the water temperature in the Dnipro River is usually higher than in other nearby urban water bodies. Freezing of the water area usually starts from the small and shallow lakes and ponds. The main branch of the Dnipro River freezes last. On the whole, the sequence of ice melting on the waterbodies is the reverse of the freezing process. The longest ice cover duration in spring is observed in the bays with small water exchange, mainly located at a large distance from Kyivska HPP.
Twórcy
  • National Aviation University, Liubomyra Huzara 1, 03058 Kyiv, Ukraine
Bibliografia
  • Adrian R., O’Reilly C.M., Zagarese H., Baines S.B., Hessen D.O., Keller W., Livingstone D.M., Sommaruga R., Straile D., Van Donk E., Weyhenmeyer G.A., Winder M., 2009, Lakes as sentinels of climate change, Limnology and Oceanography, 54 (6), 2283-2297, DOI: 10.4319/lo.2009.54.6_part_2.2283.
  • Austin J.A., Colman S.M., 2007, Lake Superior summer water temperatures are increasing more rapidly than regional water temperature: A positive ice-albedo feed-back, Geophysical Research Letters,. 34 (6), DOI: 10.1029/2006GL029021.
  • Barsi J.A., Schott J.R., Hook S.J., Raqueno N.G., Markham B.L., Radociński R.G., 2014, Landsat-8 Thermal Infrared Sensor (TIRS) vicarious radiometric calibration, Remote Sensing, 6 (11), 11607-11626, DOI: 10.3390/rs61111607.
  • Brown L.C., Duguay C.R., 2010, The response and role of ice cover in lake-climate interactions, Progress in Physical Geography: Earth and Environment, 34 (5), 671-704, DOI: 10.1177/0309133310375653.
  • Czernecki B., Ptak M., 2018, The impact of global warming on lake surface water temperature in Poland - the application of empirical-statistical downscaling, 1971-2100, Journal of Limnology, 77 (2), 340-348, DOI: 10.4081/jlimnol.2018.1707.
  • Efremova T.V., Zdorovennova G.E., Palshyn N.I., 2010, Ice regime of the Karelian lakes, (in Russian), Proceedings of Karelian Scientific Centre, 31-40.
  • Filatov N.N., Rukhovets L.A., Nazarova L.E., Georgiev A.P., Ephraim T.V., Pal’shin N.I., 2014, Climate change impacts on the ecosystem of north of European Russia, (in Russian), Proceedings of the Russian State Hydrometeorological University. A Theoretical Research Journal, 34, 49-55.
  • Kalinin V.G., 2008, Ice regime of rivers and reservoirs of the Upper Kama River, (in Russian), 252 pp.
  • Klavins M., Briede A., Rodinov V., 2009, Long term changes in ice and discharge regime of rivers in the Baltic region in relation to climatic variability, Climatic Change, 95 (3-4), 485-498, DOI: 10.1007/s10584-009-9567-5.
  • Korhonen J., 2006, Long-term changes in lake ice cover in Finland, Nordic Hydrology, 37 (4-5), 347-363, DOI: 10.2166/nh.2006.019.
  • Lieberherr G., Wunderle S., 2018, Lake surface water temperature derived from 35 years of AVHRR sensor data for European Lakes, Remote Sensing, 10 (7), 990, DOI: 10.3390/rs10070990.
  • Litvinov A.S., Zakonnova A.V., 2012, Thermal regime in the Rybinsk Reservoir under global warming, Russian Meteorology and Hydrology, 37, 640-644, DOI: 10.3103/S1068373912090087.
  • Magnuson J.J., Robertson D.M., Benson B.J., Wynne R.H., Livingstone D.M., Arai T., Assel R.A., Barry R.G., Card V., Kuusisto E., Granin N.G., Prowse T.D., Steward K.M., Vyglinski V.S., 2000, Historical trends in lake and river ice cover in the Northern Hemisphere, Science, 289 (5485), 1743-1746, DOI: 10.1126/science.289.5485.1743.
  • Marszelewski W., Skowron R., 2006, Ice cover as an indicator of winter air temperature changes: case study of the Polish Lowland lakes, Hydrological Sciences Journal, 51 (2), 335-349, DOI: 10.1623/hysj.51.2.336.
  • Meilutyte-Barauskiene D., Kovalenkoviene M., Sarauskiene D., 2005, The impact of runoff regulation on the thermal regime of the Nemunas, Environmental Research, Engineering and Management, 4 (34), 43-50.
  • Nowak B.M., Ptak M., Stanek P., 2020, Influence of a lake on river water thermal regime: a case study of Lake Sławianowskie and the Kocunia River (Pomeranian Lakeland, Northern Poland), Meteorology Hydrology and Water Management, 8 (1), 78-83, DOI: 10.26491/mhwm/115222.
  • Pareeth S., Bresciani M., Buzzi F., Leoni B., Lepori F., Ludovisi A., Morabito G., Adrian R., Neteler M., Salmaso N., 2017, Warming trends of perialpine lakes from homogenised time series of historical satellite and in-situ data, Science of the Total Environment, 578, 417-426, DOI: 10.1016/j.scitotenv.2016.10.199.
  • Ptak M., Sojka M., Nowak, B., 2019, Changes in ice regime of Jagodne Lake (North-Eastern Poland), Acta Scientiarium Polonorum. Serie Formatio Circumiectus, 18 (1), 89-100, DOI: 10.15576/ASP.FC/2019.18.1.89.
  • Ptak M., Sojka M., Nowak B., 2020, Effect of climate warming on a change in thermal and ice conditions in the largest lake in Poland - Lake Śniardwy, Journal of Hydrology and Hydromechanics, 68 (3), 260-270, DOI: 10.2478/johh-2020-0024.
  • Rachmatullina E.R., Grebin V.V., 2011, Researching long-term dynamic of ice cover thickness of the Pivdennyi Bug River basin, (in Ukrainian), Hydrology, Hydrochemistry and Hydroecology, 3 (24), 93-98.
  • Sharaf N., Fadel A., Bresciani M., Giardino C., Lemaire B.J., Slim K., Faour G., Vincon-Leite B., 2019, Lake surface temperature retrieval from Landsat-8 and retrospective analysis in Karaoun Reservoir, Lebanon, Journal of Applied Remote Sensing, 13 (4), DOI: 10.1117/1.JRS.13.044505.
  • Stonevicius E., Stankunavicius G., Kilkus G., 2008, Ice regime dynamics in the Nemunas River, Lithuania, Climate Research, 36 (1), 17-28, DOI: 10.3354/cr00707.
  • Strutynska V.M., Grebin V.V., 2010, Thermal and ice regime of the Dnipro River basin rivers from the second half of the XX century, (in Ukrainian), Nika-Tsentr, Kyiv, 196 pp.
  • Vyshnevskyi V.I., 2011, The Dnipro River, (in Ukrainian), Interpres LTD, Kyiv, 384 pp.
  • Vyshnevskyi V.I., Shevchuk S.A., 2018, Use of remote sensing data in the study of water objects of Ukraine, (in Ukrainian), Interpres LTD, Kyiv, 116 pp.
  • Vyshnevskyi V.I., Shevchuk S.A., 2020, Use of remote sensing data to study ice cover in the Dnipro Reservoirs, Journal of Geology, Geography and Geoecology, 29 (1), 206-216, DOI: 10.15421/112019.
  • Woolway R.I., Dokulil M.T., Marszelewski W., Schmid M., Bouffard D., Merchant C.J., 2017, Warming of Central European lakes and their response to the 1980s climatic regime shift, Climate Change, 142, 505-520, DOI: 10.1007/s10584-017-1966-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f5b27a9-21a6-4b05-935d-539386181f99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.