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Abstract. We recall the ancient notion of arbelos and introduce a number of concepts gene-

ralizing it. We follow the ideas presented by J. Sondow in his article on parbelos, the para-

bolic analogue of the classic arbelos. Our concepts concern the curves constructed of arcs 

which resemble each other and surfaces obtained in a similar way. We pay special attention 

to ellarbelos, the curves built of semi-ellipses, because of their possible application in engi-

neering, e.g. in determining the static moments of arc rod constructions or in problems of 

structural stability and durability of constructions.  
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1. Introduction  

The starting point of this article was a discussion on the parabolic analogue of 

arbelos described in [1]. We tried to find other ways of generalizing this notion and 

we investigated the relationships between them. Since the issue was rather elemen-

tary, the students had the opportunity to work on a par with more experienced 

mathematicians and all involved enjoyed this cooperation. Some of our interpreta-

tions of the ancient subject are described in the following.  

The first two sections contain a short summary of the properties of arbelos  

and parbelos, followed by a presentation of the results of our efforts and the ques-

tions that arose during the discussion. We consider elliptic analogues of the classic 

arbelos, namely the figures bounded by three semi ellipses which are pairwise  

tangent, but not necessarily similar. We give a necessary and sufficient condition 

for the semi ellipses for being tangent. Then we show a relationship between  

the area of the ellarbelos and the areas of certain ellipses associated to the ellarbe-

los. Finally, we present our attempts at defining three-dimensional analogues of  

arbelos.  



M. Różański, A. Samulewicz, M. Szweda, R. Wituła 

 

124

2. Antique origin  

An arbelos is a plane figure bounded by three semicircles that are pairwise tan-

gent and have diameters lying on the same line (see Figure 1). Its name comes from 

Greek and means shoemaker's knife. The first known mention of the figure can be 

found in the ancient Book of Lemmas [2] which includes a number of propositions, 

attributed to Archimedes of Syracuse and concerning the properties of circles.  

The common points of two semicircles of the arbelos are called the cusps and 

labeled A, B, C, where AC is the diameter of the largest semicircle.  

 

 

          Fig. 1. Arbelos 

 

  Fig. 2. Twin Circles of Archimedes 

Property 2.1. The length of the upper boundary of an arbelos is equal to the length 
of its lower boundary. 

Property 2.2. Under each lower arc of an arbelos construct a new arbelos similar 
to the original one. Of the four new lower arcs, the middle two are congruent and 

their common length equals one half the harmonic mean of the lengths of the origi-

nal lower arcs. 

Property 2.3. Let D be the common point of the outer semicircle and the line per-
pendicular to AB through B. Then the area of the arbelos is equal to the area of the 

circle whose diameter is BD. 

Property 2.4. The middle cusp and the midpoints of the semicircular arcs of an ar-

belos determine a rectangle whose area equals π/2  times the area of the arbelos. 

Property 2.5.  Let the segment BD be perpendicular to AB and divide the arbelos 
into two regions, each of them bounded by this segment, a semicircle and an arc of 

the largest semicircle. Then the circles inscribed in these regions, known as the 

Twin Circles of Archimedes, are congruent. 

More facts concerning the arbelos can be found in [3-6]; furthermore [4] pro-

vides an interesting historical overview of the subject.  

3. Inspired by the classic: parbelos 

The notion of arbelos can be generalized by taking three arcs that are all similar 

to each other instead of semicircles. In [1], semicircles are replaced by the latus 



Variations on the arbelos 

 

125

rectum arcs of parabolas to obtain a parabolic analog of the arbelos, referred to as 

parbelos by the author. Recall that the latus rectum of a parabola is the chord pass-

ing through the focus and parallel to the directrix. The latus rectum arcs of all pa-

rabolas are similar, as with all semicircles. The smaller arcs of the parbelos are tan-

gent to the largest one, but they are not tangent to each other.  

It turns out that the parbelos have several properties related to those of the  

arbelos.  

Property 3.1. The upper and the lower boundaries of a parbelos have the same 
length. 

Property 3.2. Under each lower arc of a parbelos construct a new parbelos similar 
to the original. Of the four new lower arcs, the middle two are congruent and their 

common length equals one half the harmonic mean of the lengths of the original 

lower arcs. 

Property 3.3. The middle cusp of a parbelos and the vertices of its three parabolas 
determine a parallelogram whose area equals 3/4  times the area of the parbelos. 

4. A step further 

In order to obtain a further class of figures resembling arbelos one can consider 

arcs of other shapes instead of semicircles.  

Fix the points A(0,0), B(b,0), C(a,0) with 0<b<a and consider three arcs U, R, L 

contained in the upper half-plane ℝ ),0[ ∞×  and such that A, C are the ends of U, 

the points A, B are the ends of L and B, C are the ends of R. Assume that U, R, L 

are pairwise disjoint apart from their common ends. Then the curve LRU ∪∪  is 

the boundary of a plane region and can be called the generalized (U,R,L)-arbelos.  

One can consider (U,R,L)-arbelos where the upper arc U is the graph of a con-

tinuous function : [0, ] [0, )F a → ∞  with (0) ( ) 0F F a= = , 0 < b < a, and the lower 

boundary of the figure consists of the graphs L and R of functions 

1
: [0, ] [0, )F b → ∞  and 

2
: [ , ] [0, )F b a → ∞ , respectively (see Figure 3). 

To avoid intersecting U by the arcs L and R (except the points (0,0) and (a,0)) it 

is necessary to assume that 

 1

2

( ) ( ) for each (0, ],

( ) ( ) for each [ , ].

F x F x x b

F x F x x b a

< ∈

< ∈

 (1)  

If U is the graph of a continuous function ),0[],0[: ∞→aF  with 

(0) ( ) 0,F F a= =  then the U-arbelos is also called the F-arbelos or the F-belos 

([7], [8]). Note that the classic arbelos and parbelos belong to this class.  

The case of U being the graph of a continuous function : [0, ] [0, )F a → ∞ has been 

deeply investigated in [7] and [8], where one can find more properties of  

F-arbelos and examples, including hyperbolic analogues of arbelos. 
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Fig. 3. 

 

 

 

Fig. 4. F-arbelos built of the lemniscate of Gerono (on the left) and F-arbelos built of non-

convex function (on the right) 

It turns out that the class of (U,R,L)-arbelos bounded by three similar arcs U, L 

and R (which are not necessarily the graphs of real-valued functions) also satisfies 

Properties 2.1, 3.1, 2.2, 3.2 and the conditions corresponding to Properties 2.4  

and 3.3.  

5. Ab ovo et ad ovum: elliptic arbelos 

Now consider elliptic arbelos or ellarbelos, the class of figures whose bounda-

ries consist of three semi ellipses instead of three semicircles. 
 

 

Fig. 5. Elliptic arbelos 
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We can assume that all considered ellipses are symmetric about the x-axis, 

however their major axes are not necessarily parallel. Then the arcs U, L, R form-

ing the boundary of the ellarbelos are the graphs of the appropriate functions F, 
1
F  

and 
2
F  (see Section 4). In particular, if all semi ellipses are pairwise similar  

then the ellarbelos is an F-arbelos and possesses all the properties mentioned in 

Section 4.  

In the definition of the ellarbelos, we do not assume that the semi ellipses are 

similar, but we require that both the L and R arcs meet the arc U in exactly one 

point. 

Consider ellipses 

 ,1
)(

:,1
)(

:,1:
2

2

2

2

2

2

2

22
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2
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where 
1 2 1 2

, , , , ,a a a b b b  are positive numbers, 
1 2
,x x R∈  and 

1 2
.x x<  

Assume that 
1

,EE  and 
2

E  are pairwise tangent and the curves 
21

,EE are con-

tained in the closed region bounded by E. Then 

 .,,
122121

axaxaaa =−=+=  (3) 

Let 
1 2 1 2 1 1 2 1 2 1

: [ ( ), ] [0, ], : [ , ] [0, ]F a a a a b F a a a a b− + + → − − − →  and 

2 1 2 1 2 2
: [ , ] [0, ]F a a a a b− + →  be the parametrizations of the semi ellipses 

}0:),{(},0:),{(
1

≥∈=≥∈= yEyxLyEyxU  and 
2

{( , ) : 0},R x y E y= ∈ ≥  re-

spectively. We intend to find conditions assuring that },2,1{, ∈iE
i

 has only one 

common point with E. Since the largest ellipse E is symmetric about the y-axis, we 

can restrict our consideration to 
2

E  and ].,[
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aaax +∈  
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is a quadratic polynomial and 
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Note that 
2

( ) 0aϕ = . Therefore, if 0ϕ ≥ on ],0[
2
a  then ϕ  must be decreasing 

on an interval ],(
22
aa ε−  for some 0>ε . Hence .0)('

2
≤aϕ  The latter is equiv-

alent to  

 1

2

2

1 .
a

b b
a

≥ +  (6) 

Now assume that (6) holds. If the coefficient of t in the equality (5) is non-

positive, i.e. if 

 2

2 1 2

,

b b

a a a
≤

+

 (7) 

then ' 0ϕ <  on 
2

[0, ]a  and ϕ  is a strictly decreasing function with 
2

( ) 0.aϕ =  Thus 

0ϕ ≥ for all 
2

[0, ].t a∈  

On the other hand, if  

 2

2 1 2

b b

a a a
>

+

 (8) 

then (5), (6) and (8) imply that 'ϕ  is an increasing linear function with ,0)('
2
≤aϕ

so 0)(' ≤tϕ for all ].,0[
2

at∈  This means that ϕ  is decreasing and, since 

,0)(
2
=aϕ  all its values are non-negative.  

Recapitulating, 0≥ϕ  on ],0[
2
a  if and only if (6) holds. 

Lemma 5.1. Three ellipses 
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are pairwise tangent if and only if 
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Henceforth we assume that the semi ellipses forming the ellarbelos satisfy the 

condition (9). 

Example 5.2. The borderline case of (9) is .11

2

1

2

1

2

1
a

a
b

a

a
bb +=+=  The ellar-

belos satisfying this condition, namely with ,9
21
=+ aa ,3=b ,5

1
=a ,5

1
=b
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,4
2
=a ,2

2
=b is depicted in Figure 6. Enlarging the value of 

1
b  or 

2
b  would re-

sult in an output of 
1
E  or 

2
E  beyond the region bounded by E. 

 

 

Fig. 6. Ellarbelos with optimally selected parameters 

Property 5.3. The area of ellarbelos equals 

).))(((
2

1
))((

2

1
12212121221121
bababbbaabababaa ππππππ ++−−+=−−+  

The above equality is shown in Figure 7. 

 

 

 

 

Fig. 7. Illustrations for the above properties for ellarbelos, on the left side, when  

b > b1+b2, on the right side, when b < b1+b2 

In particular, the area of the classic arbelos is equal to the area of the ellipse 

whose semiaxes correspond to the radii of the smaller semicircles (see Fig. 8). 
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Fig. 8. Illustration for the above properties for arbelos 

Remark 5.4. If all semi ellipses bounding an ellarbelos are similar, then there is 

a shear mapping that transforms it into an arbelos. Thus for every ellarbelos of this 

kind, there exist two congruent ellipses that are pre-images of the twin circles of 

Archimedes associated with the arbelos. 

Question 5.5. Assume that all semi ellipses enclosing an ellarbelos are similar. 

For which eccentricities do all ellarbelos have twin circles corresponding to the 

twin circles of Archimedes? Does the answer depend on whether the foci of all el-

lipses are colinear ( ba > ) or not ( ba < )?   

6. Space: above and beyond 

By a simple 3D-elliptic arbelos, or briefly 3D-ellarbelos, we mean the upper 

half of the solid obtained by rotating an ellarbelos around the x-axis (see Fig. 9). In 

other words, 3D-ellarbelos is enclosed by the plane 0=z  and three pairwise tan-

gent ellipsoids of revolution. We assume additionally that 
11

, baba ≥≥  and 

,

22
ba ≥  i.e. all ellipsoids are prolate spheroids or spheres. The 3D-ellarbelos is 

regular provided that the semiellipsoids enclosing it are similar.  

 

 

Fig. 9. 3D-elliptic arbelos 

The area of the prolate ellipsoid with the semi-principal axes a, b, b equals 

 
2

2
2 arcsin ,
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b

π

π ε

ε

+  (10) 
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where 
a

ba
22

−

=ε  is the eccentricity of the ellipse. 

The difference 
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where 
21

,εε  are the eccentricities of the ellipses ,,

21
EE respectively. 

In particular, if all the eccentrities are equal then 
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Note that 1
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→
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as .0→ε  

If all the ellipses are circles then 
1 2 1 2

2 .S S a aπ− =  

According to Property 5.3, 
21
aaπ is the area of the arbelos bounded by semicir-

cles of radii .,,

2121
aaaa +  

Property 6.1. If all semi ellipsoids enclosing 3D-ellarbelos are hemispheres, then 

the difference between the areas of the upper surface and the lower one equals 

double the area of the arbelos bounded by semicircles of the same radii as the  

hemispheres. 

Property 6.2. The regular 3D-ellarbelos has the same volume as the cylinder  

whose base is the revolved ellarbelos and the height equals the diameter of the 

ellarbelos (see Fig. 10). 

Proof: Denote by V and 
0
V , respectively, the volumes of the regular  

3D-ellarbelos and the largest semiellipsoid. Then 
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Fig. 10. Equal volumes for a 3D-arbelos composed of spheres and an arbelosoidal  

cylinder 

One can claim that increasing the dimension should result in increasing the 

number of spheres. However, the case with four pairwise tangent  hemispheres 

seems much more complicated than the ones considered  previously. Even deter-

mining the relationships between their radii is more complex.  

Denote by R the radius of the outer sphere and by 
321

,, rrr  the radii of the inner 

spheres. Using Heron's formula to calculate the areas of the appropriate triangles, 

we obtain 

 

( ) ( ) ( )

( )
3232

31312121321321

rrrrRR

rrrrRRrrrrRRrrrrrr

−−+

−−+−−=++

 (12) 

and, consequently, 

 	
1 2 3 1 2 3 1 2 3 1 2 1 3 2 3

/ (2 ( ) )R r r r r r r r r r r r r r r r= + + − − −   (13)	 

The formula (13) can be derived from Descartes' theorem as well ([9, chapter 

4.1]): 

 ( ),2)(
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1

2

321 RR
cccccccc +++=+++  

where 3,2,1,
1
== k

r
c

k

k
and .

1

R
c
R
−=  

Question 6.3. Which properties of abelos (parbelos, F-arbelos, ellarbelos,  

3D-ellarbelos) have 3D-arbelos with four spheres?  

7. Conclusions 

The present paper concerns the generalizations of the ancient notion of arbelos. 

The analogues known from other articles (parbelos, F-arbelos) have been briefly 
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described. We discuss in detail elliptic arbelos (ellarbelos). As far as we know, they 

can be useful in determining the static moments of arc rod constructions or in prob-

lems of structural stability and durability of constructions. We also undertook an 

attempt of generalizing the notion of arbelos to the three-dimensional case, never-

theless there is still a number of problems we are going to proceed to study. We 

hope that our results may be helpful to engineers, especially mechanical ones, and 

we look forward to being inspired by their work.  
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