PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation on Curing Properties and Kinetics of Isophthalonitrile Oxide

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
N,N-dihydroxybenzene-1,3-dicarboximidoyl dichloride was synthesized from benzene-1,3-dicarboxaldehyde and characterized by fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance  1H and 13C NMR). The elastomer was prepared through the 1,3-dipolar cycloaddition of reaction between liquid polybutadiene (LPB) and isophthalonitrile oxide in this work. The tensile strength of different elastomer was enhanced from 0.14 MPa to 0.33 MPa as the elongation at break decreased from 145% to 73%, and the modulus increased from 0.09 kPa to 0.47 kPa. The parameters of kinetic indicated that the curing reaction was first order reaction and the apparent activation energy of each curing system was less than 10.10 kJ/mol when the content of N,N-dihydroxybenzene-1,3- dicarboximidoyl dichloride was increased from 7% to 12%. These results suggested that nitrile oxides achieved curing of polymer binders at room temperature and this work had definite guiding significance for the application of nitrile oxides in polymer binders.
Rocznik
Strony
37--46
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Southwest University of Science and Technology, School of Materials Science and Engineering, Mianyang ,621010, People’s Republic of China
autor
  • Southwest University of Science and Technology, School of Materials Science and Engineering, Mianyang ,621010, People’s Republic of China
autor
  • Yixing Danson Science & Technology Co., Ltd., Yixing, 214200, People’s Republic of China
autor
  • Southwest University of Science and Technology, School of Materials Science and Engineering, Mianyang ,621010, People’s Republic of China
autor
  • Southwest University of Science and Technology, School of Materials Science and Engineering, Mianyang ,621010, People’s Republic of China
Bibliografia
  • 1. Hu, C., Guo, X., Jing, Y., Chen, J., Zhang, C. & Huang, J. (2014). Structure and mechanical properties of crosslinked glycidyl azide polymers via click chemistry as potential binder of solid propellant. J. Appl. Polym. Sci.131 (16), 318–323. DOI: 10.1002/app.40636.
  • 2. Lee, D.H., Kim, K.T., Jang, Y., Lee, S., Jeon, H.B. & Paik, H.J., et al. (2014). 1,2,3-triazole crosslinked polymers as binders for solid rocket propellants. J. Appl. Polym. Sci. 131 (15), 4401–4404. DOI: 10.1002/app.40594.
  • 3. Ajaz, A.G. (1995). Hydroxyl-terminated polybutadiene telechelic polymer (htpb): binder for solid rocket propellants. Rubber Chem. & Technol. 68 (3), 481–506.
  • 4. Sekkar, V., Alex, A.S., Kumar, V., & Bandyopadhyay, G.G. (2017). Pot life extension of hydroxyl terminated polybutadiene based solid propellant binder system by tailoring the binder polymer microstructure. J. Macromol. Sci. Part A – Chemistry, 54 (3), 171–175. DOI: 10.1080/10601325.2017.1265403.
  • 5. Cornille, A., Auvergne, R., Figovsky, O., Boutevin, B. & Caillol, S. (2017). A perspective approach to sustainable routes for non-isocyanate polyurethanes. European Polym. J. 87, 535–552. http: //dx.doi.org/10.1016/j.eurpolymj.2016.11.027
  • 6. Reshmi, S., Hemanth, H., Gayathri, S. & Nair, C.P.R. (2016). Polyether triazoles: an effective binder for ‘green’ gas generator solid propellants. Polymer, 92, 201–209. http: //dx.doi. org/10.1016/j.polymer.2016.03.006.
  • 7. Krishnan, S.G., KavithaAyyaswamy, & Nayak, S.K. (2013). Hydroxy terminated polybutadiene: chemical modifications and applications. J. Macromol. Sci. Part A Pure & Applied Chemistry, 50 (1), 128–138. DOI: 10.1080/10601325.2013.736275.
  • 8. Ruechardt, C., Sauer, J. & Sustmann, R. (2005). Rolf huisgen: some highlights of his contributions to organic chemistry. Cheminform,36 (40). DOI: 10.1002/hlca.200590098.
  • 9. Sexton, T.M., Freindorf, M., Kraka, E. & Cremer, D. (2016). A reaction valley investigation of the cycloaddition of 1,3-dipoles with the dipolarophiles ethene and acetylene – solution of a mechanistic puzzle. J. Physical Chem. A. DOI: 10.1021/acs.jpca.6b07975.
  • 10. Binder, W.H. & Sachsenhofer, R. (2010). Polymersome/silica capsules by ‘click’-chemistry. Die Unterrichtspraxis/teaching German, 29 (12–13), 1097–1103. DOI: 10.1002/marc.200800119.
  • 11. Mlostoń, G., Kowalski, M.K., Obijalska, E. & Heimgartner, H. (2017). Efficient synthesis of fluoroalkylated 1,4,2-oxathiazoles via regioselective [3+2]-cycloaddition of fluorinated nitrile oxides with thioketones. J. Fluor. Chem. 199: 92–96. https: //doi.org/10.1016/j.jfl uchem. 2017.04.11.
  • 12. Majumder, S. & Bhuyan, P.J. (2012). Stereoselective synthesis of novel annulated thiopyrano indole derivatives from simple oxindole via intramolecular 1,3-dipolar cycloaddition reactions of nitrone and nitrile oxide. Tetrahedron Lett. 53 (7), 762–764. DOI: 10.1016/j.tetlet.2011.11.136
  • 13. Woodward, R.B. & Hoffmann, R. (1965). Stereochemistry of electrocyclic reactions. J. Amer. Chem. Soc. 87 (2), 395–397.
  • 14. Breslow D.S., Gardens M. US Patent 3390204 1968.
  • 15. Lin, B., Yu, P., He, C.Q. & Houk, K.N. (2016). Origins of regioselectivity in 1,3-dipolar cycloadditions of nitrile oxides with alkynylboronates. Bioorg. & Medic. Chem. 24(20), 4787–4790. https: //doi.org/10.1016/j.bmc.2016.07.032
  • 16. Choe, H., Pham, T.T., Lee, J.Y., Latif, M., Park, H. & Kang, Y.K., et al. (2016). Remote stereoinductive intramolecular nitrile oxide cycloaddition: asymmetric total synthesis and structure revision of (-)-11beta-hydroxycurvularin. J. Orga. Chem. 81 (6), 2612 DOI: 10.1021/acs.joc.5b02760. 46 Pol. J. Chem. Tech., Vol. 20, No. 3, 2018
  • 17. Tegeler, J.J. & Diamond, C.J. (2010). Aroylnitrile oxide cyclizations. 2. synthesis of (3-aroylisoxazol-5-yl)alkanoic acids. J. Heteroc. Chem. 24(3), 701–703. DOI: 10.1002/jhet.5570240331.
  • 18. Pan, W., Chen, H., Mu, J., Li, W., Jiang, F. & Weng, G., et al. (2017). Synthesis of high crystalline syndiotactic 1,2-polybutadienes and study on their reinforcing effect on cis-1,4 polybutadiene. Polymer, 111, 20–26. https: //doi.org/10.1016/j.polymer. 2017.01.022.
  • 19. Iii, J.B.S., Gardner, D.S., Yao, W., Shi, C., Reddy, P. & Tebben, A.J., et al. (2008). From rigid cyclic templates to conformationally stabilized acyclic scaffolds. part i: the discovery of ccr3 antagonist development candidate bms-639623 with picomolar inhibition potency against eosinophil chemotaxis. Bioorg. & Medic. Chem. Lett. 18 (2), 576. https: //doi.org/10.1016/j.bmcl.2007.11.067
  • 20. Liu, K.C., Shelton, B.R. & Howe, R.K. (1980). A particularly convenient preparation of benzohydroximinoyl chlorides (nitrile oxide precursors). J. Org. Chem. 45 (19), 3916–3918.
  • 21. Sugium S, Ueno H, Kono M. US, Patent 3778424 1970.
  • 22. Kissane, M., Lynch, D., Chopra, J., Lawrence, S.E. & Maguire, A.R. (2010). The influence of reaction conditions on the diels-alder cycloadditions of 2-thio-3-chloroacrylamides; investigation of thermal, catalytic and microwave conditions. Organic & Biomolecular Chemistry, 8 (24), 5602–5613. DOI: 10.1039/C0OB00368A.
  • 23. Zeng, R.T., Wu, Y., Li, Y.D., Wang, M. & Zeng, J.B. (2017). Curing behavior of epoxidized soybean oil with biobased dicarboxylic acids. Polymer Testing, 57, 281–287. https: //doi.org/10.1016/j. polymertesting. 2016.12.007.
  • 24. Mansilla, M.A., Garraza, A.L.R., Silva, L., Salgueiro, W., Macchi, C. & Marzocca, A.J., et al. (2013). Evolution of the free volume and glass transition temperature with the degree of cure of polybutadiene rubbers. Polymer Testing, 32 (4), 686–690. rights reserved. http: //dx.doi.org/10.1016/j.polymertesting.2013.03.001.
  • 25. Ding, J., Peng, W., Luo, T. & Yu, H. (2016). Study on the curing reaction kinetics of a novel epoxy system. Rsc Advances, 7(12). DOI: 10.1039/C6RA25120J.
  • 26. Haddadi, S.A., Kardar, P., Abbasi, F. & Mahdavian, M. (2017). Effects of nano-silica and boron carbide on the curing kinetics of resole resin. J. Therm. Analysis & Calorimetry, 128 (2), 1217–1226. DOI: 10.1007/s 10973-016-5951-3.
  • 27. Monteserín, C., Blanco, M., Aranzabe, E., Aranzabe, A. & Vilas, J.L. (2017). Effects of graphene oxide and chemically reduced graphene oxide on the curing kinetics of epoxy amine composites. J. Appl. Polym. Sci. 134 (19) 44803. DOI: 10.1002/app.44803.
  • 28. Sharif, M., Pourabbas, B., Sangermano, M., Sadeghi Moghadam, F., Mohammadi, M. & Roppolo, I., et al. (2017). The effect of graphene oxide on uv curing kinetics and properties of su8 nanocomposites. Polymer International, 66. 405. DOI: 10.1002/pi.5271.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f5196d7-836f-4cf1-b981-aa3e1a47bd99
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.