PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A review of additive manufacturing technologies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This article aims to present an overview of additive manufacturing technologies, including the latest research trends and a heuristic comparative analysis of the selected technologies group. Design/methodology/approach: Quantitative analysis of research articles from the past 5 years was performed using the most referred scientific databases - Scopus and Web of Science. Qualitative analysis included a State-of-the-Art overview of 3D printing by means of photopolymerization, material and binder jetting, extrusion techniques and powder fusion. Heuristic comparative analysis of the abovementioned technologies was performed using a dendrological matrix, considering the potential and attractiveness traits of the listed methods. Findings: The quantitative analysis results indicate that powder fusion technologies have received the most attention in the last 5 years. Heuristic procedural benchmarking analysis has found that Powder Bed Fusion is the most promising group of additive manufacturing technologies. Research limitations/implications: Presented review indicates that industrial applications of additive manufacturing are continuously growing, compared to other manufacturing technologies, such as casting, forming and subtractive treatment. The upward trend is expected to continue in the near future, and the range of practical industrial applications will expand rapidly. Practical implications: The quantitative, qualitative, and comparative analysis of additive manufacturing technologies presented in this article might be useful for researchers looking for interesting new research areas. The same applies to entrepreneurs interested in implementing modern additive manufacturing techniques in business practice. Originality/value: The value of this paper is the presentation of a wide spectrum of additive manufacturing technologies using various technical solutions and engineering materials, considering the latest development trends in their area.
Rocznik
Strony
68--85
Opis fizyczny
Bibliogr. 127 poz.
Twórcy
  • Institute of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
autor
  • Doctoral School of Exact and Technical Sciences, University of Zielona Góra, Al. Wojska Polskiego 69, 65-762 Zielona Góra, Poland
Bibliografia
  • [1] Materials 2030 Roadmap. December 2022. Available from: https://www.ami2030.eu/wp-content/uploads/2022/12/2022-12- 09_Materials_2030_RoadMap_VF4.pdf (access in 5.09.2024)
  • [2] Materials 2030 Manifesto. February 2022. Available from: https://www.ami2030.eu/wp-content/uploads/2022/06/advancedmaterials-2030- manifesto-Published-on-7-Feb-2022.pdf (access in 5.09.2024)
  • [3] E. Vandeweert, C. Tokamanis, Making the Materials to Drive Europe’s Energy Revolution, SETIS Magazine 8 (2015) 24-25. Available from: https://publications.jrc.ec.europa.eu/repository/bitstrea m/JRC95048/setis%20magazine%20- %20materials%20for%20energy_online.pdf (access in 5.09.2024)
  • [4] A.D. Dobrzańska‐Danikiewicz, D. Cichocki, M. Pawlyta, D. Łukowiec, W. Wolany, Synthesis conditions of carbon nanotubes with the chemical vapor deposition method, Physica Status Solidi (b) 251/12 (2014) 2420-2425. DOI: https://doi.org/10.1002/pssb.201451178
  • [5] A. Adel, Future of industry 5.0 in society: human-centric solutions, challenges and prospective research areas, Journal of Cloud Computing 11 (2022) 40. DOI: https://doi.org/10.1186/s13677-022-00314-5
  • [6] P. Hryniewicz, W. Banas, K. Foit, A. Gwiazda, A. Sekala, Modelling cooperation of industrial robots as multi-agent systems, IOP Conference Series: Materials Science and Engineering 227/1 (2017) 012061. DOI: https://doi.org/10.1088/1757-899X/227/1/012061
  • [7] A. Gwiazda, W. Banas, A. Sekala, K. Foit, P. Hryniewicz, G. Kost, Construction typification as the tool for optimizing the functioning of a robotized manufacturing system, IOP Conference Series: Materials Science and Engineering 95/1 (2015) 012103. DOI: https://doi.org/10.1088/1757-899X/95/1/012103
  • [8] M. Sąsiadek, J. Basl, Lean production in practice, in: Innovation Vision 2020: from Regional Development Sustainability to Global Economic Growth, Proceedings of the 25th International Business Information Management Association Conference, Amsterdam, Holand, 2015, 699-705.
  • [9] I. Paprocka, D. Krenczyk, A. Burduk, The method of production scheduling with uncertainties using the ants colony optimization, Applied Sciences 11/1 (2021) 171. DOI: https://doi.org/10.3390/app11010171
  • [10] B. Skolud, D. Krenczyk, R. Davidrajuh, Solving repetitive production planning problems. an approach based on activity-oriented Petri nets, in: M. Graña, J.M. López-Guede, O. Etxaniz, Á. Herrero, H. Quintián, E. Corchado (eds), International Joint Conference SOCO’16-CISIS’16-ICEUTE’16. SOCO CISIS ICEUTE 2016. Advances in Intelligent Systems and Computing, vol 527, Springer, Cham, 2017, 397-407. DOI: https://doi.org/10.1007/978-3-319-47364-2_38
  • [11] M. Sąsiadek, Assembly sequence planning with the principles of design for assembly, in: C. Weber, S. Husung, M. Cantamessa, G. Cascini, D. Marjanovic, S. Graziosi (eds), DS 80-4 Proceedings of the 20th International Conference on Engineering Design (ICED 15) Vol 4: Design for X, Design to X, Milan, Italy, 2015, 031-040.
  • [12] W. Woźniak, R. Kielec, M. Sąsiadek, T. Wojnarowski, A functional analysis of selected transport exchanges and tendering platforms in the transport orders market, Proceedings of the 31st International Business Information Management Association IBIMA, Milan, Italy, 2018, 25-26.
  • [13] W. Woźniak, T. Wojnarowski, The method for a fast selection of the profitable transport offers derived from the freight exchange market, in: Innovation Vision 2020: from Regional Development Sustainability to Global Economic Growth, Proceedings of the 25th International Business Information Management Association Conference, Amsterdam, Holand, 2015, 2073-2085.
  • [14] L.J. Müller, A. Kätelhön, S. Bringezu, S. McCoy, S. Suh, R. Edwards, V. Sick, S. Kaiser, R. Cuéllar-Franca, A. El Khamlichi, J.H. Lee, N. von der Assen, A. Bardow, The carbon footprint of the carbon feedstock CO2, Energy and Environmental Science 13/9 (2020) 2979-2992. DOI: https://doi.org/10.1039/D0EE01530J
  • [15] M.M. Mekonnen, W. Gerbens-Leenes, The water footprint of global food production, Water 12/10 (2020) 2696. DOI: https://doi.org/10.3390/w12102696
  • [16] S. Nazir, A. Capocchi, Circular Economy 6Rs and Reporting Practices: The Role of Institutional Pressures, in: Sustainability Reporting Practices and the Circular Economy: Analysis and Integrated Strategies, Palgrave Macmillan, Cham, 2024, 185-224. DOI: https://doi.org/10.1007/978-3-031-51845-4_5
  • [17] M. Michalski, F. Romankiewicz, AlSi21CuNi silumin modification with phosphor and strontium micro additions, E3S Web of Conferences 19 (2017) 03026. DOI: https://doi.org/10.1051/e3sconf/20171903026
  • [18] A.W. Bydałek, P. Schlafka, S. Biernat, The analysis of the chloride and fluoride influences on the reducer refinement processes (Carbo-N-Ox) aluminum alloys, Archives of Foundry Engineering 13/3 (2013) 9-14. DOI: https://doi.org/10.2478/afe-2013-0050
  • [19] P. Schlafka, A.W. Bydałek, The Influence of the Proportion of Charge from Waste Materials on the Quality of High Pressure Castings, Archives of Foundry Engineering 19/2 (2019) 21-24. DOI: https://doi.org/10.24425/afe.2019.127110
  • [20] A. Özgür, Y. Uygun, M.T Hütt, A review of planning and scheduling methods for hot rolling mills in steel production, Computers and Industrial Engineering 151 (2021) 106606. DOI: https://doi.org/10.1016/j.cie.2020.106606
  • [21] M. Jenek, S.V. Fedorov, M.H. Swe, Synthesis of Hard- Melting Carbide, Nitrite And Intermetallic Phases with Surface Electron-Beam Microallоying, Materials Science Forum 876 (2016) 25-35. DOI: https://doi.org/10.4028/www.scientific.net/MSF.876.25
  • [22] M. Ociepa, M. Jenek, E. Feldshtein, On the wear comparative analysis of cutting tools made of composite materials based on polycrystalline cubic boron nitride when finish turning of AISI D2 (EN X153CrMoV12) steel, Journal of Superhard Materials 40 (2018) 396-401. DOI: https://doi.org/10.3103/S1063457618060059
  • [23] A. Jadhav, V.S. Jadhav, A review on 3D printing: An additive manufacturing technology, Materials Today: Proceedings 62/4 (2022) 2094-2099. DOI: https://doi.org/10.1016/j.matpr.2022.02.558
  • [24] M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons 60/5 (2017) 677-688. DOI: https://doi.org/10.1016/j.bushor.2017.05.011
  • [25] L.J. Kumar, P.M. Pandey, D.I. Wimpenny (eds), 3D printing and additive manufacturing technologies, Springer, Singapore, 2019.
  • [26] T. Pereira, J.V. Kennedy, J. Potgieter, A comparison of traditional manufacturing vs additive manufacturing, the best method for the job, Procedia Manufacturing 30 (2019) 11-18. DOI: https://doi.org/10.1016/j.promfg.2019.02.003
  • [27] D. Mierzwiński, M. Łach, S. Gądek, W.T. Lin, D.H. Tran, K. Korniejenko, A brief overview of the use of additive manufacturing of con-create materials in construction, Acta Innovations 48/2 (2023) 22-37. DOI: http://doi.org/10.32933/ActaInnovations.48.2
  • [28] I. Krimi, Z. Lafhaj, L. Ducoulombier, Prospective study on the integration of additive manufacturing to building industry ‒ Case of a French construction company, Additive Manufacturing 16 (2017) 107-114. DOI: https://doi.org/10.1016/j.addma.2017.04.002
  • [29] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (eds), Microporous and solid metallic materials for medical and dental application, Open Access Library, Annal VII (1) 2017, 1-580 (in Polish).
  • [30] L.E. Murr, Global trends in the development of complex, personalized, biomedical, surgical implant devices using 3D printing/additive manufacturing: A review, Medical Devices and Sensors 3/6 (2020) e10126. DOI: https://doi.org/10.1002/mds3.10126
  • [31] H.N. Singh, S. Agrawal, Y.K Modi, Additively manufactured patient specific implants: A review, Archive of Mechanical Engineering 71/1 (2024) 109- 138. DOI: http://doi.org/10.24425/ame.2024.149635
  • [32] S.F. Iftekar, A. Aabid, A. Amir, M. Baig, Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review, Polymers 15/11 (2023) 2519. DOI: https://doi.org/10.3390/polym15112519
  • [33] J. Garcia, Z. Yang, R. Mongrain, R.L. Leask, K. Lachapelle, 3D printing materials and their use in medical education: a review of current technology and trends for the future, BMJ Simulation and Technology Enhanced Learning 4/1 (2018) 27-40. DOI: https://doi.org/10.1136/bmjstel-2017-000234
  • [34] A.D. Dobrzańska-Danikiewicz, B. Siwczyk, A. Bączyk, A. Romankiewicz, Mechanical properties of recycled PLA and PETG printed by FDM/FFM method, Journal of Achievements in Materials and Manufacturing Engineering 119/2 (2023) 49-59. DOI: https://doi.org/10.5604/01.3001.0053.9490
  • [35] H.I. Medellin-Castillo, J. Zaragoza-Siqueiros, Design and manufacturing strategies for fused deposition modelling in additive manufacturing: a review, Chinese Journal of Mechanical Engineering 32/1 (2019) 53. DOI: https://doi.org/10.1186/s10033-019-0368-0
  • [36] Q. Zhong, K. Wei, T. Ouyang, X. Li, X. Zeng, Effect of rotation angle on surface morphology, microstructure, and mechanical properties of Inconel 718 alloy fabricated by high power laser powder bed fusion, Journal of Materials Science and Technology 154 (2023) 30-42. DOI: https://doi.org/10.1016/j.jmst.2023.01.021
  • [37] A. Su, S.J. Al’Aref, History of 3D Printing, in: S.J. Al'Aref, B. Mosadegh, S. Dunham, J.K. Min, (eds), 3D Printing Applications in Cardiovascular Medicine, Academic Press, Cambridge, MA, 2018, 1-10. DOI: https://doi.org/10.1016/b978-0-12-803917-5.00001-8
  • [38] H. Kodama, Stereoscopic figure drawing device, Patent application no. JPS56144478A.
  • [39] H. Kodama, Invention of Photo-Solidilying Modeling Method, Macro Review 9/2 (1997) 59-79.
  • [40] C.W. Hull, Apparatus for production of three-dimensional objects by stereolithography, Patent application no US4575330A.
  • [41] C.R. Deckard, Selective laser sintering, The University of Texas at Austin, 1988.
  • [42] W.J. Swanson, P.W. Turley, P.J. Leavitt, P.J. Karwoski, J.E. LaBossiere, R.L. Skubic, High temperature modeling apparatus, Patent application no. US6722872B1.
  • [43] EOS GmbH history timeline. Available from: https://www.eos.info/about-us/who-we-are/history (access in 16.11.2024) [
  • 44] RepRap project wiki. Available from: https://reprap.org/wiki/RepRap (access in 16.11.2024)
  • [45] Archived Fab@Home project website. Available from: https://web.archive.org/web/20160315114427/http://w ww.fabathome.org/index.php?q=node/1 (access in 16.11.2024)
  • [46] Prusa Research by Josef Prusa website. Available from: https://www.prusa3d.com/ (access in 16.11.2024)
  • [47] Shenzhen Creality 3D Technology Co., Ltd. website. Available from: https://www.creality.com/ (access in 16.11.2024)
  • [48] V.G. Gokhare, D.N. Raut, D.K. Shinde, A review paper on 3D-printing aspects and various processes used in the 3D-printing, International Journal of Engineering Research and Technology 6/06 (2017) 953-958.
  • [49] G. Prashar, H. Vasudev, D. Bhuddhi, Additive manufacturing: expanding 3D printing horizon in industry 4.0, International Journal on Interactive Design and Manufacturing 17 (2023) 2221-2235. DOI: https://doi.org/10.1007/s12008-022-00956-4
  • [50] Verified Market Research, Chemicals and Materials - Global 3D Printing Filament Market Size By Type Outlook (Plastics, Metals, Ceramics), By Application (Industrial, Aerospace And Defense, Automotive, Healthcare), By Geographic Scope And Forecast, Report ID: 26677. Available from: https://www.verifiedmarketresearch.com/product/3d-printing-filament-market/ (access in: 15.08.2024)
  • [51] ISO/ASTM 52900:2015. Additive manufacturing — General principles — Terminology.
  • [52] J. Huang, Q. Qin, J. Wang, A review of stereolithography: Processes and systems, Processes 8/9 (2020) 1138. DOI: https://doi.org/10.3390/pr8091138
  • [53] What is stereolithography?. Available from: https://www.graphite-am.co.uk/case-study/what-is-stereolithography-sla/ (access in 17.11.2024)
  • [54] Stereolithography. Available from: https://techwaregroup.com/capabilities/advanced-manufacturing/additive-manufacturing/stereolithography-sla/ (access in 17.11.2024)
  • [55] N. Sedush, L. Kalinin, A. Puchkov, S. Chvalun, Synthesis and UV Cross‐Linking of Methacrylated Linear and Star‐Shaped Lactide Oligomers as Potential Biodegradable Resins for Stereolithography, Macromolecular Symposia 404/1 (2022) 2100380. DOI: https://doi.org/10.1002/masy.202100380
  • [56] V. Rstakyan, L. Mkhitaryan, L. Baghdasaryan, T. Ghaltaghchyan, Z. Karabekian, G. Sevoyan, M.A. Rodríguez, Stereolithography of ceramic scaffolds for bone tissue regeneration: Influence of hydroxyapatite/silica ratio on mechanical properties, Journal of the Mechanical Behavior of Biomedical Materials 152 (2024) 106421. DOI: https://doi.org/10.1016/j.jmbbm.2024.106421
  • [57] A. Bove, F. Calignano, M. Galati, L. Iuliano, Photopolymerization of ceramic resins by stereolithography process: a review, Applied Sciences 12/7 (2022) 3591. DOI: https://doi.org/10.3390/app12073591
  • [58] I. Hevus, P. Kannaboina, Y. Qian, J. Wu, M. Johnson, L. R. Gibbon, D. C. Webster, Furanic (Meth)acrylate Monomers as Sustainable Reactive Diluents for Stereolithography, ACS Applied Polymer Materials 5/11 (2023) 9659-9670. DOI: https://doi.org/10.1021/acsapm.3c02207
  • [59] M. Jeong, K. Radomski, D. Lopez, J.T. Liu, J.D. Lee, S.J. Lee. Materials and Applications of 3D Printing Technology in Dentistry: An Overview, Dentistry Journal 12/1 (2024) 1. DOI: https://doi.org/10.3390/dj12010001
  • [60] W. Moon, S. Kim, B.S. Lim, Y.S. Park, R.J.Y. Kim, S.H. Chung, Dimensional accuracy evaluation of temporary dental restorations with different 3D printing systems, Materials 14/6 (2021) 1487. DOI: https://doi.org/10.3390/ma14061487
  • [61] 61 Z. Feng, Y. Li, L. Hao, Y. Yang, T. Tang, D. Tang, W. Xiong, Graphene-Reinforced Biodegradable Resin Composites for Stereolithographic 3D Printing of Bone Structure Scaffolds, Journal of Nanomaterials 2019 (2019) 710264. DOI: https://doi.org/10.1155/2019/9710264
  • [62] D. Sakarya, F.B. Barlas, Y.M. Sahin, S. Yucel, Customized bioresin formulation for stereolithography in tissue engineering, Main Group Chemistry 23/3 (2024) 271-282. DOI: https://doi.org/10.3233/MGC- 240002
  • [63] S. Baumgartner, R. Gmeiner, J.A. Schönherr, J. Stampfl, Stereolithography-based additive manufacturing of lithium disilicate glass ceramic for dental applications, Materials Science and Engineering: C 116 (2020) 111180. DOI: https://doi.org/10.1016/j.msec.2020.111180
  • [64] L. Wang, L. Yao, W. Tang, R. Dou, Effect of Fe2O3 doping on color and mechanical properties of dental 3Y-TZP ceramics fabricated by stereolithography-based additive manufacturing, Ceramics International 49/8 (2023) 12105-12115. DOI: https://doi.org/10.1016/j.ceramint.2022.12.062
  • [65] I. Hevus, S. Tiwari, S. Thorat, L.R. Gibbon, J.J. La Scala, C.A. Ulven, M.P. Sibi, D.C. Webster, Vanillin- Derived Veratrole Reactive Diluents in Stereolithography, ACS Applied Polymer Materials 6/13 (2024) 7705-7715. DOI: https://doi.org/10.1021/acsapm.4c01183
  • [66] I. Romero-Ocaña, N.F. Delgado, S.I. Molina, Biomass waste from rice and wheat straw for developing composites by stereolithography additive manufacturing, Industrial Crops and Products 189 (2022) 115832. DOI: https://doi.org/10.1016/j.indcrop.2022.115832
  • [67] S. Zhang, S. Bhagia, M. Li, X. Meng, A.J. Ragauskas, Wood-reinforced composites by stereolithography with the stress whitening behavior, Materials and Design 206 (2021) 109773. DOI: https://doi.org/10.1016/j.matdes.2021.109773
  • [68] I. Gibson, D. Rosen, B. Stucker, M. Khorasani, Material jetting, in: Additive Manufacturing Technologies, Springer, Cham, 2021, 203-235. DOI: https://doi.org/10.1007/978-3-030-56127-7_7
  • [69] C.M. Hsieh, C.E. Cipriani, E.B. Pentzer, 3D Printing of Hybrid Solid–Liquid Structures, Polymer International 73/10 (2024) 793-802. DOI: https://doi.org/10.1002/pi.6636
  • [70] Y. Yan, M. Han, Y. Jiang, E.L.L. Ng, Y. Zhang, C. Owh, S.Y. Chan, Electrically Conductive Polymers for Additive Manufacturing, ACS Applied Materials and Interfaces 16/5 (2024) 5337-5354. DOI: https://doi.org/10.1021/acsami.3c13258
  • [71] P. Kamble, Y. Mittal, G. Gote, M. Patil, K.P. Karunakaran, A mathematical surface roughness model for objects made by material jetting, Progress in Additive Manufacturing 9 (2024) 2213-2224. DOI: https://doi.org/10.1007/s40964-024-00573-5
  • [72] B. Ren, J. Song, Peridynamics Simulation of Cold Spray: Deformation, Jetting, and Effect of Surface Oxide Layer on Impact Process. Jetting, and Effect of Surface Oxide Layer on Impact Process. Available at SSRN: https://doi.org/10.2139/ssrn.4701470
  • [73] C. Sandre, L.S. De Bernardez, L. Poggi, J.M. Sanguinetti, Application of Material Jetting technology for the development of incision and closure surgical devices, Materials Today: Proceedings 70 (2022) 673- 677. DOI: https://doi.org/10.1016/j.matpr.2022.10.068
  • [74] S. Gangwar, P. Saxena, D.S.G. Morales, T. Biermann, R. Lachmayer, Quality analysis of material jetted silicone material for soft robotics application, Materials Letters 355 (2024) 135566. DOI: https://doi.org/10.1016/j.matlet.2023.135566
  • [75] L.B. Bezek, M.P. Cauchi, R. De Vita, J.R. Foerst, C.B. Williams, 3D printing tissue-mimicking materials for realistic transseptal puncture models, Journal of the Mechanical Behavior of Biomedical Materials 110 (2020) 103971. DOI: https://doi.org/10.1016/j.jmbbm.2020.103971
  • [76] Ultimate Guide to Material Jetting 3D Printing: Unlocking the Future of Additive Manufacturing, Available from: https://blog.goldsupplier.com/material-jetting-3d-printing/ (access in 17.11.2024)
  • [77] Gibson, D. Rosen, B. Stucker, M. Khorasani, Binder jetting, in: Additive Manufacturing Technologies, Springer, Cham, 2021, 237-252. DOI: https://doi.org/10.1007/978-3-030-56127-7_8
  • [78] Introduction to metal 3D printing with Binder Jetting technology (in Polish). Available from: https://centrumdruku3d.pl/wstep-drukowania-3d-metalu-technologii-binder-jetting/ (access in 17.11.2024)
  • [79] N. Lecis, M. Mariani, R. Beltrami, L. Emanuelli, R. Casati, M. Vedani, A. Molinari, Effects of process parameters, debinding and sintering on the microstructure of 316L stainless steel produced by binder jetting, Materials Science and Engineering: A 828 (2021) 142108. DOI: https://doi.org/10.1016/j.msea.2021.142108
  • [80] H. Miyanaji, K.M. Rahman, M. Da, C.B. Williams, Effect of fine powder particles on quality of binder jetting parts, Additive Manufacturing 36 (2020) 101587. DOI: https://doi.org/10.1016/j.addma.2020.101587
  • [81] K. Zhao, Z. Su, Z. Ye, W. Cao, J. Pang, X. Wang, J. Zhu, Review of the types, formation mechanisms, effects, and elimination methods of binder jetting 3D-printing defects, Journal of Materials Research and Technology 27 (2023) 5449-5469. DOI: https://doi.org/10.1016/j.jmrt.2023.11.045
  • [82] Y. Wang, N. Genina, A. Müllertz, J. Rantanen, Binder jetting 3D printing in fabricating pharmaceutical solid products for precision medicine, Basic and Clinical Pharmacology and Toxicology 134/3 (2024) 325-332. DOI: https://doi.org/10.1111/bcpt.13974
  • [83] N.A. Charoo, E.M. Mohamed, M. Kuttolamadom, M.A. Khan, Z. Rahman, Binder Jetting Powder Bed 3D Printing for the Fabrication of Drug Delivery System, in: D. Lamprou (ed), Nano- and Microfabrication Techniques in Drug Delivery. Advanced Clinical Pharmacy - Research, Development and Practical Applications, vol 2, Springer, Cham, 2023, 137-172. DOI: https://doi.org/10.1007/978-3-031-26908-0_7
  • [84] Z. Zhou, A. Lennon, F. Buchanan, H.O. McCarthy, N. Dunne, Binder jetting additive manufacturing of hydroxyapatite powders: Effects of adhesives on geometrical accuracy and green compressive strength, Additive Manufacturing 36 (2020) 101645. DOI: https://doi.org/10.1016/j.addma.2020.101645
  • [85] A. Simchi, F. Petzoldt, T. Hartwig, S.B. Hein, B. Barthel, L. Reineke, Microstructural development during additive manufacturing of biomedical grade Ti- 6Al-4V alloy by three-dimensional binder jetting: material aspects and mechanical properties, The International Journal of Advanced Manufacturing Technology 127/3 (2023) 1541-1558. DOI: https://doi.org/10.1007/s00170-023-11661-1
  • [86] M. Salehi, D.W.K. Neo, V. Rudel, M. Stautner, P. Ganser, S.X. Zhang, H.L. Seet, M.L.S. Nai, Digital manufacturing of personalized magnesium implants through binder jet additive manufacturing and automated post machining, Journal of Magnesium and Alloys 12/8 (2024) 3308-3324. DOI: https://doi.org/10.1016/j.jma.2024.07.027
  • [87] K. Rajan, M. Samykano, K. Kadirgama, W.S.W. Harun, M.M. Rahman, Fused deposition modeling: process, materials, parameters, properties, and applications, The International Journal of Advanced Manufacturing Technology 120/3 (2022) 1531-1570. DOI: https://doi.org/10.1007/s00170-022-08860-7
  • [88] What is FDM 3D Printing?. Available from: https://hlhrapid.com/knowledge/what-is-fdm-3d-printing/ (access in 17.11.2024)
  • [89] B.M. Schmitt, C.F. Zirbes, C. Bonin, D. Lohmann, D.C. Lencina, A.D.C.S. Netto, A comparative study of cartesian and delta 3d printers on producing PLA parts, Materials Research 20 (2018) 883-886. DOI: https://doi.org/10.1590/1980-5373-MR-2016-1039
  • [90] A.S. Öğülmüş, M. Tinkir, A Scara-Type 3D Printer Design And Experimental Validation. International Journal of Engineering Research and Development 16/1 (2024) 127-140. DOI: https://doi.org/10.29137/umagd.1371739
  • [91] A.V.S. Otoni, J.J.P.Z. de Souza Tavares, R.M.F. Neto, 3D Printer as a Resource for Didactic Development Tool for the Maker Culture—An Open-Source Design of the COREXY 3D Printer, in: A. Mesquita, A. Abreu, J.V. Carvalho, C. Santana, C.H.P. de Mello (eds), Perspectives and Trends in Education and Technology. ICITED 2023. Smart Innovation, Systems and Technologies, vol 366. Springer, Singapore, 2023, 175- 185. DOI: https://doi.org/10.1007/978-981-99-5414- 8_18
  • [92] S.W. Kang, J. Mueller, Multiscale 3D printing via active nozzle size and shape control, Science Advances 10/23 (2024) eadn7772. DOI: https://doi.org/10.1126/sciadv.adn7772
  • [93] Ü. Çevik, M. Kam, A review study on mechanical properties of obtained products by FDM method and metal/polymer composite filament production, Journal of Nanomaterials 2020 (2020) 6187149. DOI: https://doi.org/10.1155/2020/6187149
  • [94] N.M. Pu’ad, R.A. Haq, H.M. Noh, H.Z. Abdullah, M.I. Idris, T.C. Lee, Review on the fabrication of fused deposition modelling (FDM) composite filament for biomedical applications, Materials Today: Proceedings 29/1 (2020) 228-232. DOI: https://doi.org/10.1016/j.matpr.2020.05.535
  • [95] M.R. Pelaez‐Samaniego, K. Rhodes, T. Garcia‐Perez, Y.C. Chang, J. Zhang, M.K.B. Bakri, V. Yadama, Basalt fiber reinforced polypropylene to manufacture 3D printed composites, Polymer Composites 45/13 (2024) 12362-12376. DOI: https://doi.org/10.1002/pc.28641
  • [96] M.N. Ahmad, M.R. Ishak, M.M. Taha, F. Mustapha, Z. Leman, Irianto, Mechanical, thermal and physical characteristics of oil palm (Elaeis Guineensis) fiber reinforced thermoplastic composites for FDM–Type 3D printer, Polymer Testing 120 (2023) 107972. DOI: https://doi.org/10.1016/j.polymertesting.2023.107972
  • [97] Z. Cheng, J. Zhou, Y. Liu, J. Yan, S. Wang, J. Tao, Z. Yao, 3D printed composites based on the magnetoelectric coupling of Fe/FeCo@C with multiple heterogeneous interfaces for enhanced microwave absorption, Chemical Engineering Journal 480 (2024) 148188. DOI: https://doi.org/10.1016/j.cej.2023.148188
  • [98] H. Ramazani, A. Kami, Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: a review, Progress in Additive Manufacturing 7/4 (2022) 609-626. DOI: https://doi.org/10.1007/s40964-021-00250-x
  • [99] A.Ç. Kilinc, A.A. Goktas, Ö.Y. Keskin, S. Köktaş, Extrusion-based 3D printing of CuSn10 bronze parts: production and characterization, Metals 11/11 (2021) 1774. DOI: https://doi.org/10.3390/met11111774
  • [100] I. Buj-Corral, F. Fenollosa-Artés, J. Minguella- Canela, Three-Dimensional Printing of Metallic Parts by Means of Fused Filament Fabrication (FFF), Metals 14/11 (2024) 1291. DOI: https://doi.org/10.3390/met14111291
  • [101] R. Singh, A. Gupta, O. Tripathi, S. Srivastava, B. Singh, A. Awasthi, K.K. Saxena, Powder bed fusion process in additive manufacturing: An overview, Materials Today: Proceedings 26/2 (2020) 3058- 3070. DOI: https://doi.org/10.1016/j.matpr.2020.02.635
  • [102] Laser Powder Bed Fusion: Revolutionizing 3D Manufacturing For Metal Parts. Available from: https://kdmfab.com/laser-powder-bed-fusion/ (access in 17.11.2024)
  • [103] P.S. Cook, D.J. Ritchie, Determining the laser absorptivity of Ti-6Al-4V during laser powder bed fusion by calibrated melt pool simulation, Optics and Laser Technology 162 (2023) 109247. DOI: https://doi.org/10.1016/j.optlastec.2023.109247
  • [104] H. Chen, Y. Sun, W. Yuan, S. Pang, W. Yan, Y. Shi, A review on discrete element method simulation in laser powder bed fusion additive manufacturing, Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers 1/1 (2022) 100017. DOI: https://doi.org/10.1016/j.cjmeam.2022.100017
  • [105] E.L. Papazoglou, N.E. Karkalos, P. Karmiris- Obratański, A.P. Markopoulos, On the modeling and simulation of SLM and SLS for metal and polymer powders: a review, Archives of Computational Methods in Engineering 29 (2022) 941-973. DOI: https://doi.org/10.1007/s11831-021-09601-x
  • [106] M. Galati, A. Snis, L. Iuliano, Experimental validation of a numerical thermal model of the EBM process for Ti6Al4V, Computers and Mathematics with Applications 78/7 (2019) 2417-2427. DOI: https://doi.org/10.1016/j.camwa.2018.07.020
  • [107] J. Wang, R. Zhu, Y. Liu, L. Zhang, Understanding melt pool characteristics in laser powder bed fusion: An overview of single-and multi-track melt pools for process optimization, Advanced Powder Materials 2/4 (2023) 100137. DOI: https://doi.org/10.1016/j.apmate.2023.100137
  • [108] X. Zhao, T. Wang, Laser powder bed fusion of powder material: A review, 3D Printing and Additive Manufacturing 10/6 (2023) 1439-1454. DOI: https://doi.org/10.1089/3dp.2021.0297
  • [109] I.A. Pelevin, E.A. Terekhin, D.Y. Ozherelkov, I.S. Tereshina, D.Y. Karpenkov, F.Y. Bochkanov, A.A. Gromov, New Scanning Strategy Approach for Laser Powder Bed Fusion of Nd-Fe-B Hard Magnetic Material, Metals 13/6 (2023) 1084. DOI: https://doi.org/10.3390/met13061084
  • [110] S. Pothala, M.J. Raju, Recent advances of metallic bio-materials in additive manufacturing in biomedical implants–A review, Materials Today: Proceedings (2023) (in press). DOI: https://doi.org/10.1016/j.matpr.2023.07.109
  • [111] Y. Wang, W. Guo, H. Zheng, Y. Xie, X. Zhang, H. Li, H. Zhang, Microstructure, crack formation and improvement on Nickel-based superalloy fabricated by powder bed fusion, Journal of Alloys and Compounds 962 (2023) 171151. DOI: https://doi.org/10.1016/j.jallcom.2023.171151
  • [112] D. Lin, X. Xi, R. Ma, Z. Shi, H. Wei, X. Song, C. Tan, Fabrication of a strong and ductile FeCoCrNiMo0. 3 high-entropy alloy with a micro-nano precipitate framework via laser powder bed fusion, Composites Part B: Engineering 266 (2023) 111006. DOI: https://doi.org/10.1016/j.compositesb.2023.111006
  • [113] D. Vogiatzief, A. Evirgen, S. Gein, V.R. Molina, A. Weisheit, M. Pedersen, Laser powder bed fusion and heat treatment of an AlCrFe2Ni2 high entropy alloy, Frontiers in Materials 7 (2020) 248. DOI: http://doi.org/10.3389/fmats.2020.00248
  • [114] B. Xiao, W. Jia, J. Wang, L. Zhou, Selective electron beam melting of WMoTaNbVFeCoCrNi refractory high-entropy alloy, Materials Characterization 193 (2022) 112278. DOI: https://doi.org/10.1016/j.matchar.2022.112278
  • [115] M.H. Tsai, C.P. Cheng, H.C. Fu, A. Chiba, K. Yamanaka, Exploration of a new AlCoCrNiNb high-entropy alloy: in situ alloying of a CoCrMo, M247, and Nb powder mixture via laser powder bed fusion, Progress in Additive Manufacturing (2024) 1-10. DOI: https://doi.org/10.1007/s40964-024-00708-8
  • [116] M. Chen, S. Van Petegem, Z. Zou, M. Simonelli, Y.Y. Tse, C.S.T. Chang, H. Moens-Van Swygenhoven, Microstructural engineering of a dual-phase Ti-Al-V-Fe alloy via in situ alloying during laser powder bed fusion, Additive Manufacturing 59/B (2022) 103173. DOI: https://doi.org/10.1016/j.addma.2022.103173
  • [117] J. Li, Y. Wu, L. Xue, Z. Wei, Laser powder bed fusion in-situ alloying of refractory WTa alloy and its microstructure and mechanical properties, Additive Manufacturing 67 (2023) 103493. DOI: https://doi.org/10.1016/j.addma.2023.103493
  • [118] A.D. Dobrzańska-Danikiewicz, A. Bączyk, A review of new Ti-based materials manufactured in situ for biomedical applications, Journal of Achievements in Materials and Manufacturing Engineering 121/2 (2023) 306-319. DOI: https://doi.org/10.5604/01.3001.0054.2844
  • [119] A.D. Dobrzańska-Danikiewicz, Foresight Methods for Technology Validation, Roadmapping and Development in the Surface Engineering Area, Archives of Material Science and Engineering 44/2 (2010) 69-86.
  • [120] A. Khaira, Ashish, From 3D to 4D: The Evolution of Additive Manufacturing and Its Implications for Industry 5.0, in: A. Hassan, P. Dutta, S. Gupta, E. Mattar, S. Singh (eds), Emerging Technologies in Digital Manufacturing and Smart Factories, IGI Global Scientific Publishing, Hershey, PA, 2024, 39- 53. DOI: https://doi.org/10.4018/979-8-3693-0920- 9.ch003
  • [121] R. Rahmani, J. Karimi, P.R. Resende, J.C. Abrantes, S.I. Lopes, Overview of Selective Laser Melting for Industry 5.0: Toward Customizable, Sustainable, and Human-Centric Technologies, Machines 11/5 (2023) 522. DOI: https://doi.org/10.3390/machines11050522
  • [122] B. Skolud, D. Krenczyk, M. Zemczak, Multi-assortment rhythmic production planning and control, IOP Conference Series: Materials Science and Engineering 95/1 (2015) 012133. DOI: https://doi.org/10.1088/1757-899X/95/1/012133
  • [123] S.J. Chen, L.M. Mazur, M. Sąsiadek, Project task flow optimisation and departmental flow analysis using design structure matrix and genetic algorithm, International Journal of Logistics Systems and Management 15/1 (2013) 68-92. DOI: https://doi.org/10.1504/IJLSM.2013.053239
  • [124] D. Krenczyk, A. Dobrzańska-Danikiewicz, The deadlock protection method used in the production systems, Journal of Materials Processing Technology 164-165 (2005) 1388-1394. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.056
  • [125] J. Basl, M. Sasiadek, Applications of the Lean IT principles in selected Czech and Polish companies, Proceedings of the 16th International Conference on Information Integration and Web-based Applications and Services “iiWAS '14”, Association for Computing Machinery, New York, NY, USA, 537- 541. DOI: https://doi.org/10.1145/2684200.2684365
  • [126] R.J. Hernandez, C. Miranda, J. Goñi, Empowering sustainable consumption by giving back to consumers the ‘right to repair’, Sustainability 12/3 (2020) 850. DOI: https://doi.org/10.3390/su12030850
  • [127] T.W. Dagne, G. Piasecka, The right to repair doctrine and the use of 3D printing technology in Canadian patent law, Canadian Journal of Law and Technology 14/2 (2016) 263-287.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f472f7e-8922-4795-902a-77c01274501a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.