PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using GPU Accelerators for Parallel Simulations in Material Physics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work is focused on parallel simulation of electron-electron interactions in materials with non-trivial topological order (i.e. Chern insulators). The problem of electron-electron interaction systems can be solved by diagonalizing a many-body Hamiltonian matrix in a basis of configurations of electrons distributed among possible single particle energy levels – the configuration interaction method. The number of possible configurations exponentially increases with the number of electrons and energy levels; 12 electrons occupying 24 energy levels corresponds to the dimension of Hilbert space about 106 . Solving such a problem requires effective computational methods and highly efficient optimization of the source code. The work is focused on many-body effects related to strongly interacting electrons on flat bands with non-trivial topology. Such systems are expected to be useful in study and understanding of new topological phases of matter, and in further future they can be used to design novel nanomaterials. Heterogeneous architecture based on GPU accelerators and MPI nodes will be used for improving performance and scalability in parallel solving problem of electron-electron interaction systems
Słowa kluczowe
Twórcy
  • Wroclaw Centre of Networking and Supercomputing (WCSS) Wroclaw University of Science and Technology
autor
  • Department of Theoretical Physics Wroclaw University of Science and Technology
  • Wroclaw Centre of Networking and Supercomputing (WCSS) Wroclaw University of Science and Technology
  • Department of Telecommunications and Teleinformatics Wroclaw University of Science and Technology
Bibliografia
  • [1] A. Szabo, N.S. Ostlund, Modern quantum chemistry: introduction to advanced electronic structure theory, New York 1982.
  • [2] T. Neupert, L. Santos, C. Chamon, C. Mudry, Fractional Quantum Hall States at Zero Magnetic Field, Physical Review Letters 106, 236-804 (2011).
  • [3] Y. Wang, Z. Gu, C. Gong, D.N. Sheng, Fractional Quantum Hall Effect of Hard-Core Bosons in Topological Flat Bands, Physical Review Letters 107, 146-803 (2011).
  • [4] D.N. Sheng, Z. Gu, K. Sun, L. Sheng, Fractional quantum Hall effect in the absence of Landau levels, Nature Communications 2, (2011).
  • [5] N. Regnault, B.A. Bernevig, Fractional Chern Insulator, Physical Review X 1, 21-14 (2011).
  • [6] B. Jaworowski, A. Manolescu, P. Potasz, Fractional Chern insulator phase at the transition between checkerboard and Lieb lattices, Physical Review B 92, 245-119 (2015).
  • [7] A.D. Güçlü, P. Potasz, O. Voznyy, M. Korkusinski, P. Hawrylak, Magnetism and Correlations in Fractionally Filled Degenerate Shells of Graphene Quantum Dots, Physical Review Letters 103, 246-805 (2009).
  • [8] A.D. Güçlü, P. Potasz, P. Hawrylak, Electronic Shells of Dirac Fermions in Graphene Quantum Rings in a Magnetic Field, Acta Physica Polonica A 116, 832-834 (2009).
  • [9] T.M. Lahey, T.M. Ellis, FORTRAN 90 Programming, Boston 1994.
  • [10] B. Chapman, G. Jost, R. van der Pas, Using OpenMP: Portable Shared Memory Parallel Programming, Cambridge 2007.
  • [11] OpenMP specification, http://www.openmp.org/specificat ions/, [Online; accessed 14-November-2018].
  • [12] NVIDIA CUDA C Programming Guide, https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.
  • [13] MPI-forum, http://mpi-forum.org/, [Online; accessed 14-November-2018].
  • [14] OpenMPI homepage, https://www.open-mpi.org/, [Online; accessed 14-November-2018].
  • [15] M. Hruszowiec, P. Potasz, A. Szymanska-Kwiecień. M. ´Uchronski, ´ Using GPU Accelerators for improving Performance and Scalability in Material Physics Simulations, www.prace-ri.eu/IMG/pdf/WP235.pdf, 2017, [Online;accessed 14-November-2018].
  • [16] B.B. Gursoy, M. Browne, M. Lysaght, Evaluation of Tools and Techniques for Future Exascale Systems, www.praceri.eu/IMG/pdf/D7.4_4ip.pdf", 2017, [Online; accessed 14-November-2018].
  • [17] G.M. Amdahl, Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities, Proceedings of the Spring Joint Computer Conference, 483-485 (1967).
  • [18] J.L. Gustafson, Reevaluating Amdahl’s Law, Communications of the ACM 31, 532-533 (1988).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f42d753-cd67-48d7-8686-642fe85c0d9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.