PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Simulation study of flywheel energy storage assisted coal-fired unit frequency regulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the increasing proportion of renewable energy power generation, its accompanying intermittency and volatility problems are becoming increasingly prominent, and the frequency fluctuation of the power system is becoming increasingly severe. Participation in frequency regulation services can be economically rewarding for generating units. The flywheel energy storage system can effectively improve the frequency regulation capability of coal-fired units. In this paper, the improvement of the FM capability of coal-fired units in the operation of a two-area interconnected power system containing wind power is investigated, and a model of a two-area interconnected power system comprising a turbine generator, wind power, and flywheel energy storage is established. The enhancement of the FM capability of coal-fired units by adding a flywheel energy storage system is analyzed. The simulation results show that adding the flywheel energy storage system improves the FM capability of the coal-fired unit to a considerable extent, and the coal-fired unit can decide the flywheel capacity it needs to be equipped with through detailed economic calculations.
Rocznik
Strony
art. no. e151951
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • Shenzhen Energy Nanjing Holding Co., Ltd, Nanjing, China
autor
  • School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, China
autor
  • Shenzhen Energy Nanjing Holding Co., Ltd, Nanjing, China
  • School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, China
autor
  • School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing, China
Bibliografia
  • [1] P. Komarnicki, “Energy storage systems: power grid and energy market use cases,” Arch. Electr. Eng., vol. 65, no. 3, pp. 495–511, 2016, doi: 10.1515/aee-2016-0036.
  • [2] X. Zhang et al., “Overview and Prospect of Modern Power System Frequency Modulation on Power Supply Side in China,” in 6th International Conference on Energy, Electrical and Power Engineering (CEEPE), 2023, pp. 861–866, doi: 10.1109/CEEPE58418.2023.10166170.
  • [3] M. Khoshjahan et al., “Enhancing electricity market flexibility by deploying ancillary services for flexible ram,” Electr. Power Syst. Res., vol. 191, no. 2, p. 106878, 2021, doi: 10.1016/j.epsr.2020.106878.
  • [4] S. Gülen, Gas turbine combined cycle power plants. Boca Raton: CRC, 2019, pp. 1–20, doi: 10.1201_9780429244360.
  • [5] M. Baszyński and S. Piróg, “Determining the mechanical losses in a high-speed motor on the ex ample of a flywheel energy storage system,” Arch. Electr. Eng., vol. 61, no. 3, pp. 299–313, 2012, doi: 10.2478/v10171-012-0024-0.
  • [6] A. Mystkowski and A. Rowiński, “Construction and control of AMBs high speed flywheel,” Arch. Mech. Eng., vol. 58, no. 1, pp. 79–89, 2011, doi: 10.2478/v10180-011-0005-7.
  • [7] M.E. Amiryar and K.R. Pullen, “A Review of Flywheel Energy Storage System Technologies and Their Applications,” Appl. Sci., vol. 7, no. 3, p. 286, 2017, doi: 10.3390/app7030286.
  • [8] B. Björn, H. Bernhoff, and M. Leijon, “Flywheel energy and power storage systems,” Renew. Sustain. Energy Rev., vol. 11, no. 2, pp. 235–258, 2007, doi: 10.1016/j.rser.2005.01.004.
  • [9] F. Faramarz, A. Majazi, and K. Al-Haddad, “A comprehensive review of flywheel energy storage system technology,” Renew. Sustain. Energy Rev., vol. 67, pp. 477–490, 2017, doi: 10.1016/j.rser.2016.09.060.
  • [10] J.G. Bitterly, “Flywheel technology: past, present, and 21st century projections,” IEEE Aerosp. Electron. Syst. Mag., vol. 13, no. 8, pp. 13–16, 1998, doi: 10.1109/62.707557.
  • [11] C. Subhashree, “Flywheel energy storage systems: A critical review on technologies, applications, and future prospects,” Int. Trans. Electr. Energy Syst., vol. 31, no. 9, p. e13024, 2021, doi: 10.1002/2050-7038.13024.
  • [12] S. Wei et al., “Analytical Models and Evaluation for Novel Multi-Stage Flywheel Configurations for Grid-Connected Wind Power Applications,” in 12th International Electrical Engineering Congress (iEECON), 2024, pp. 1–6, doi: 10.1109/iEECON60677.2024.10537905.
  • [13] J. Du, G. Liu, and H. Yang, “Primary frequency control of flywheel energy storage assisted wind farms,” in 3rd New Energy and Energy Storage System Control Summit Forum (NEESSC), 2023, pp. 126–131, doi: 10.1109/NEESSC59976.2023.10349275.
  • [14] Y. Zhao et al., “An Efficient Control Strategy for Integrated Flywheel Energy Storage System Based on HIM,” in 26th International Conference on Electrical Machines and Systems (ICEMS), 2023, pp. 2364–2368, doi: 10.1109/ICEMS59686.2023.10344949.
  • [15] X. Lyh, Y. Hu, and Z. Lin, “Distributed cooperative control of a flywheel array energy storage system,” Int. J. Robust Nonlinear Control, 2023, pp. 1–21, doi: 10.1002/rnc.6793.
  • [16] R. Sebastián and R. Peña-Alzola, “Control and simulation of a flywheel energy storage for a wind diesel power system,” Int. J. Electr. Power Energy Syst., vol. 64, pp. 1049–2015, 2015, doi: 10.1016/j.ijepes.2014.08.017.
  • [17] S.R. Das et al., “Fuzzy Controller Designed Based Multilevel Inverter for Power Quality Enhancement,” IEEE Trans. Consum. Electron., vol. 70, no. 2, pp. 4839–4847, 2024, doi: 10.1109/TCE.2024.3389687.
  • [18] E. Elhoussin et al., “A Lab-scale Flywheel Energy Storage System: Control Strategy and Domestic Applications,” Energies, vol. 13, no. 3, p. 653, 2020 ,doi: 10.3390/en13030653.
  • [19] H.S. Saravia, H.P. Painemal, and M.M. Juan, “Flywheel Energy Storage Model, Control and Loca-tion for Improving Stability: The Chilean Case,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 3111–3119 , 2017, doi: 10.1109/tpwrs.2016.2624290.
  • [20] R. Qin et al., “Simulation of Secondary Frequency Modulation Process of Wind Power with Auxiliary of Flywheel Energy Storage,” Sustainability, vol. 15, no. 15, p. 11832, 2023, doi: 10.3390/su151511832.
  • [21] Y. Lu et al., “Optimal Design of Energy Storage System Assisted AGC Frequency Regulation Based on DDPG Algorithm,” in IEEE International Conference on Power Science and Technology (ICPST), 2023, pp. 819–826, doi: 10.1109/ICPST56889.2023.10165606.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f40a49a-13c7-4d30-80ef-3aa4f360bee4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.