PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heavy Metals Contamination of Local and Imported Rice in Semarang, Central Java, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study defined the heavy metal concentration in rice, a commonly consumed staple food in Indonesia that is domestically produced and also imported from other countries due to its high demand. A total of six rice samples, comprising of four domestic and two foreign were randomly taken from Semarang stores and analyzed using the Atomic Absorbance Spectrometer (AAS). The laboratory results revealed that three varieties of rice, two from Indonesia (MW and PW; 0.561 and 0.456 mg/kg, each), and one from the United States (B; 0.307 mg/kg), exceeded the Indonesian dietary standard for lead (Pb) (SNI). Furthermore, the concentration of chromium (Cr) in two rice that are imported (B, 0.241 mg/kg and J, 0.723 mg/kg) were greater than the 0.2 mg/kg threshold established by the Chinese government. However, all samples had acceptable levels of As and Hg, and none had detectable levels of Cd. In terms of pH levels, domestically produced rice had a wider range (3.88–5.78) compared to imported rice (4.96–5.68). Although locally grown and imported rice had acceptable levels of LCR, only one local rice sample and two imported rice samples exceeded the Target Hazard Quotient (THQ) as well as Hazard Index (HI) values. In conclusion, consuming heavy metals contamination rice on a regular basis poses carcinogenic as well as non-carcinogenic health risks.
Słowa kluczowe
EN
pH   heavy metals   rice   local   import  
Rocznik
Strony
49--60
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
  • Faculty of Public Health, Diponegoro University, Semarang, Jawa Tengah, Indonesia
  • Faculty of Public Health, Diponegoro University, Semarang, Jawa Tengah, Indonesia
  • Faculty of Public Health, Diponegoro University, Semarang, Jawa Tengah, Indonesia
  • Poltekkes Kemenkes Semarang, Semarang, Jawa Tengah, Indonesia
  • Faculty of Public Health, Diponegoro University, Semarang, Jawa Tengah, Indonesia
autor
  • Department of Public Health, Faculty of Sports Science, Universitas Negeri Semarang, Semarang, Jawa Tengah, Indonesia
Bibliografia
  • 1. Abdul Halim, N.S., Abdullah, R., Karsani, S.A., Osman, N., Panhwar, Q.A., Ishak, C.F. 2018. Influence of Soil Amendments on the Growth and Yield of Rice in Acidic Soil. In Agronomy, 8(9). https://doi.org/10.3390/agronomy8090165
  • 2. Adamczyk-Szabela, D., Wolf, W.M. 2022. The Impact of Soil pH on Heavy Metals Uptake and Photosynthesis Efficiency in Melissa officinalis, Taraxacum officinalis, Ocimum basilicum. Molecules (Basel, Switzerland), 27(15). https://doi.org/10.3390/molecules27154671
  • 3. Alengebawy, A., Abdelkhalek, S.T., Qureshi, S.R., Wang, M.-Q. 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), 42.
  • 4. Ali, H., Khan, E., Ilahi, I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019.
  • 5. Ali, M.P., Bari, M.N., Ahmed, N., Kabir, M.M.M., Afrin, S., Zaman, M.A.U., Haque, S.S., Willers, J. L. 2017. Rice production without insecticide in small-holder farmer’s field. Frontiers in Environmental Science, 5, 16.
  • 6. Ashraf, U., Mahmood, M.H.R., Hussain, S., Abbas, F., Anjum, S.A., Tang, X. 2020. Lead (Pb) distribution and accumulation in different plant parts and its associations with grain Pb contents in fragrant rice. Chemosphere, 248, 126003. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.126003
  • 7. Barinda, S., Ayuningtyas, D. 2022. Assessing the food control system in Indonesia: A conceptual framework. Food Control, 134, 108687. https://doi.org/https://doi.org/10.1016/j.foodcont.2021.108687
  • 8. Bielecka, J., Markiewicz-Żukowska, R., Nowakowski, P., Grabia, M., Puścion-Jakubik, A., Mielcarek, K., Gromkowska-Kępka, K. J., Soroczyńska, J., Socha, K. 2020. Content of toxic elements in 12 groups of rice products available on Polish market: Human health risk assessment. Foods, 9(12), 1906.
  • 9. BPS. 2022. Pengeluaran Untuk Konsumsi Penduduk Indonesia Maret 2019. https://www.bps.go.id/
  • 10. Budaraga, I.K., Salihat, R.A. 2021. Analysis of metals (Pb, Mn, Cd, Zn, Cu) in Purple Rice and Purple Rice Stems Cultivated Organically using Biogas Slug in Padang Pariaman, West Sumatra Province. IOP Conference Series: Earth and Environmental Science, 709(1), 12071.
  • 11. Cataldo, D.A., Wildung, R.E. 1978. Soil and plant factors influencing the accumulation of heavy metals by plants. Environmental Health Perspectives, 27, 149–159.
  • 12. D’odorico, P., Carr, J. A., Laio, F., Ridolfi, L., Vandoni, S. 2014. Feeding humanity through global food trade. Earth’s Future, 2(9), 458–469.
  • 13. Fan, Y., Zhu, T., Li, M., He, J., Huang, R. 2017. Heavy Metal Contamination in Soil and Brown Rice and Human Health Risk Assessment near Three Mining Areas in Central China. Journal of Healthcare Engineering, 2017, 4124302. https://doi.org/10.1155/2017/4124302
  • 14. Faraj, B.H., Al-Hiyaly, S.A.K., AlMashhady, A.A.M. 2019. Heavy Metals Content in Several Imported Rice Crops (Oryza sativa) from the Local Markets. Engineering and Technology Journal, 37(1), 109–112.
  • 15. Figueiredo-Pereira, M.E., Yakushin, S., Cohen, G. 1998. Disruption of the intracellular sulfhydryl homeostasis by cadmium- induced oxidative stress leads to protein thiolation and ubiquitination in neuronal cells. Journal of Biological Chemistry, 273(21), 12703–12709. https://doi.org/10.1074/jbc.273.21.12703
  • 16. Guo, B., Hong, C., Tong, W., Xu, M., Huang, C., Yin, H., Lin, Y., Fu, Q. 2020. Health risk assessment of heavy metal pollution in a soil-rice system: a case study in the Jin-Qu Basin of China. Scientific Reports, 10(1), 11490.
  • 17. Hafizah, D., Hakim, D.B., Harianto, H., Nurmalina, R. 2020. The Role of Rice’s Price in the Household Consumption in Indonesia. Agriekonomika, 9(1), 38–47.
  • 18. Hasan, G.M.M.A., Das, A.K., Satter, M.A. 2022. Accumulation of Heavy Metals in Rice (Oryza sativa. L) Grains Cultivated in Three Major Industrial Areas of Bangladesh. Journal of Environmental and Public Health, 2022, 1836597. https://doi.org/10.1155/2022/1836597
  • 19. Ishikawa, S., Makino, T., Ito, M., Harada, K., Nakada, H., Nishida, I., Nishimura, M., Tokunaga, T., Shirao, K., Yoshizawa, C. 2016. Low-cadmium rice (Oryza sativa L.) cultivar can simultaneously reduce arsenic and cadmium concentrations in rice grains. Soil Science and Plant Nutrition, 62(4), 327–339.
  • 20. Islam, S., Rahman, M.M., Islam, M.R., Naidu, R. 2016. Arsenic accumulation in rice: consequences of rice genotypes and management practices to reduce human health risk. Environment International, 96, 139–155.
  • 21. Jan, A.T., Azam, M., Siddiqui, K., Ali, A., Choi, I., Haq, Q.M.R. 2015. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. International Journal of Molecular Sciences, 16(12), 29592–29630. https://doi.org/10.3390/ijms161226183
  • 22. Ji, W., Chen, Z., Li, D., Ni, W. 2012. Identifying the Criteria of Cadmium Pollution in Paddy Soils Based on a Field Survey. Energy Procedia, 16, 27–31. https://doi.org/10.1016/j.egypro.2012.01.006
  • 23. Jolly, Y.N., Islam, A., Akbar, S. 2013. Transfer of metals from soil to vegetables and possible health risk assessment. SpringerPlus, 2, 1–8.
  • 24. Jung, M.C. 2008. Heavy Metal Concentrations in Soils and Factors Affecting Metal Uptake by Plants in the Vicinity of a Korean Cu-W Mine. In Sensors, 8(4), 2413–2423. https://doi.org/10.3390/s8042413
  • 25. Kasam, K., Rahmawati, S., Mulya Iresha, F., Wacano, D., Fauziah, I., Amrullah, M. 2018. Evaluation of Heavy Metal Exposure to Soil and Paddy Plant around the Closed Municipal Solid Waste Landfill: Case Study at Gunung Tugel Landfill, Banyumas-Central Java. IOP Conference Series: Materials Science and Engineering, 299, 12012. https://doi.org/10.1088/1757-899X/299/1/012012
  • 26. Khosravi-Darani, K., Rehman, Y., Katsoyiannis, I.A., Kokkinos, E., Zouboulis, A.I. 2022. Arsenic Exposure via Contaminated Water and Food Sources. Water, 14(12), 1884.
  • 27. Kong, X., Liu, T., Yu, Z., Chen, Z., Lei, D., Wang, Z., Huan, Z., Qiuhua, L., Zhang, S. 2018. Heavy Metal Bioaccumulation in Rice from a High Geological Background Area in Guizhou Province, China. International Journal of Environmental Research and Public Health, 15, 2281. https://doi.org/10.3390/ijerph15102281
  • 28. Lahiji, F.A.S., Ziarati, P., Jafarpour, A. 2016. Potential of Rice Husk Biosorption in Reduction of Heavy Metals from Oryza sativa Rice. Biosciences Biotechnology Research Asia, 13(4), 2231–2237.
  • 29. Merismon, Budianta, D., Napoleon, A., Hermansyah. 2017. The contamination of pb and cd in the intensive paddy field at musi rawas regency, south sumatera-Indonesia. Pollution Research, 36(3), 381–386.
  • 30. Mustafa, G., Komatsu, S. 2016. Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1864(8), 932–944.
  • 31. Myat Soe, A.M., Mu, A.A., Toyoda, K. 2023. Arsenic and heavy metal contents in white rice samples from rainfed paddy fields in Yangon division, Myanmar—Natural background levels? Plos One, 18(3), e0283420.
  • 32. Pan, Y., Peng, H., Xie, S., Zeng, M., Huang, C. 2019. Eight elements in soils from a typical light industrial city, China: Spatial distribution, ecological assessment, and the source apportionment. International Journal of Environmental Research and Public Health, 16(14), 2591.
  • 33. Rai, P.K., Lee, S.S., Zhang, M., Tsang, Y.F., Kim, K.-H. 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, 365–385. https://doi.org/ https://doi.org/10.1016/j.envint.2019.01.067
  • 34. Roma-Burgos, N., San Sudo, M.P., Olsen, K.M., Werle, I., Song, B.-K. 2021. Weedy rice (Oryza spp.): what’s in a name? Weed Science, 69(5), 505–513.
  • 35. Romdhane, L., Panozzo, A., Radhouane, L., Dal Cortivo, C., Barion, G., Vamerali, T. 2021. Root Characteristics and Metal Uptake of Maize (Zea mays L.) under Extreme Soil Contamination. In Agronomy, 11(1). https://doi.org/10.3390/agronomy11010178
  • 36. Rozaki, Z. 2021. Food security challenges and opportunities in indonesia post COVID-19. In Advances in Food Security and Sustainability, 6, 119–168. https://doi.org/10.1016/bs.af2s.2021.07.002
  • 37. Saliem, H.P., Suryani, E., Suhaeti, R.N., Ariani, M. 2019. The dynamics of Indonesian consumption patterns of rice and rice-based food eaten away from home.
  • 38. Satpathy, D., Reddy, M.V., Dhal, S.P. 2014. Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the East Coast of India. BioMed Research International, 2014.
  • 39. Sharma, A., Katnoria, J.K., Nagpal, A.K. 2016. Heavy metals in vegetables: screening health risks involved in cultivation along wastewater drain and irrigating with wastewater. SpringerPlus, 5(1), 1–16.
  • 40. Sibuar, A.A., Zulkafflee, N.S., Selamat, J., Ismail, M.R., Lee, S.Y., Abdull Razis, A.F. 2022. Quantitative analysis and human health risk assessment of heavy metals in paddy plants collected from Perak, Malaysia. International Journal of Environmental Research and Public Health, 19(2), 731.
  • 41. Sintorini, M.M., Widyatmoko, H., Sinaga, E., Aliyah, N. 2021. Effect of pH on metal mobility in the soil. IOP Conference Series: Earth and Environmental Science, 737(1), 12071.
  • 42. Steffan, J.J., Brevik, E.C., Burgess, L.C., Cerdà, A. 2018. The effect of soil on human health: an overview. European Journal of Soil Science, 69(1), 159–171.
  • 43. Sulaiman, F.R., Hamzah, H.A. 2018. Heavy metals accumulation in suburban roadside plants of a tropical area (Jengka, Malaysia). Ecological Processes, 7(1), 28. https://doi.org/10.1186/s13717-018-0139-3
  • 44. Testa, S. 2004. Sources of Chromium Contamination in Soil and Groundwater. In Chromium(VI) Handbook, 143–163. https://doi.org/10.1201/9780203487969.ch4
  • 45. Upadhyay, M.K., Majumdar, A., Suresh Kumar, J., Srivastava, S. 2020. Arsenic in rice agro-ecosystem: solutions for safe and sustainable rice production. Frontiers in Sustainable Food Systems, 4, 53.
  • 46. USEPA, I. 2012. Integrated risk information system of the US Environmental Protection Agency.
  • 47. Wang, J.-Y., Yan, X.-Y., Gong, W. 2015. Effect of Long-Term Fertilization on Soil Productivity on the North China Plain. Pedosphere, 25(3), 450–458. https://doi.org/https://doi.org/10.1016/S1002-0160(15)30012-6
  • 48. Wang, N., Han, J., Wei, Y., Li, G., Sun, Y. 2019. Potential ecological risk and health risk assessment of heavy metals and metalloid in soil around Xunyang mining areas. Sustainability, 11(18), 4828.
  • 49. World Population Review. 2022. Rice Production by Country 2022. https://worldpopulationreview.com/, https://worldpopulationreview.com/country-rankings/rice-production-by-country
  • 50. Xu, S., Yu, C., Wang, Q., Liao, J., Liu, C., Huang, L., Liu, Q., Wen, Z., Feng, Y. 2023. Chromium Contamination and Health Risk Assessment of Soil and Agricultural Products in a Rural Area in Southern China. Toxics, 11(1), 1–15. https://doi.org/10.3390/toxics11010027
  • 51. Yadav, S.K. 2010. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76(2), 167–179. https://doi.org/https://doi.org/10.1016/j.sajb.2009.10.007
  • 52. Yan, A., Wang, Y., Tan, S.N., Mohd Yusof, M.L., Ghosh, S., Chen, Z. 2020. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359.
  • 53. Yang, W., Yang, L., Li, X., Chen, M., Xu, M., Chen, Y., Jing, H., Wu, P., Wang, P. 2022. Spatial Distribution, Food Chain Translocation, Human Health Risks and Environmental Thresholds of Heavy Metals of the Dominant Maize Cultivation Area, Northwest Guizhou Province, China. Journal of Soils and Sediments.
  • 54. Zakaria, Z., Zulkafflee, N.S., Mohd Redzuan, N.A., Selamat, J., Ismail, M.R., Praveena, S.M., Tóth, G., Abdull Razis, A.F. 2021. Understanding potential heavy metal contamination, absorption, translocation and accumulation in rice and human health risks. Plants, 10(6), 1070.
  • 55. Zhao, F.-J., Wang, P. 2020. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant and Soil, 446, 1–21.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6f3e6699-91d0-4bff-9a1f-de9309f023b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.